Advertisement

Martensitic Transformation Effect on the Dislocation Emission from a Semi-infinite Crack Tip in Nanocomposites

  • Tengwu He
  • Miaolin FengEmail author
  • Xiuhua Chen
Article
  • 2 Downloads

Abstract

A theoretical model is established to investigate the effect of martensitic transformation particle on the dislocation emission from a crack tip in ceramic-matrix nanocomposites. Using the model of dislocation-based strain nucleus and the Green’s function method, the expressions of complex potentials and stress fields are derived in closed form. The critical stress intensity factors for the first-lattice dislocation emission and the maximum number of emitted dislocations are well calculated. The effects of important parameters such as the size of transformation particle, the dislocation emission angle and the distance from the crack tip to the transformation particle on dislocation emission are discussed in detail. The results reveal that the transformation particle shows a significant shielding effect on the dislocation emission from the crack tip, and the shielding effect enhances with an increase in the size of transformation particle. On the other hand, the results also imply that the emission of edge dislocations is closely related with the dislocation emission angle, and there exists a probable angle \({\vert }{\theta }{\vert }\approx 74^{\circ }\) making the dislocation emission easiest. Besides, the remarkable crack blunting induced by the dislocation emission is quite difficult for small grain size but easy for the growth of crack.

Keywords

Shielding effect Martensitic transformation Dislocation emission Stress intensity factor Nanocomposite 

Notes

Acknowledgements

The authors would like to deeply appreciate the support from the National Natural Science Foundation of China (11572191 and 51601112) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20130073110057).

References

  1. 1.
    Chevalier J, Gremillard L. Ceramics for medical applications: a picture for the next 20 years. J Eur Ceram Soc. 2009;29(7):1245–55.CrossRefGoogle Scholar
  2. 2.
    Kirsten A, Begand S, Oberbach T, Telle R, Fischer H. Subcritical crack growth behavior of dispersion oxide ceramics. J Biomed Mater Res Part B Appl Biomater. 2010;95B(1):202–6.CrossRefGoogle Scholar
  3. 3.
    Sun X, Han W, Liu Q, Hu P, Hong C. ZrB\(_2\)-ceramic toughened by refractory metal Nb prepared by hot-pressing. Mater Des. 2010;31(9):4427–31.CrossRefGoogle Scholar
  4. 4.
    Zhu YF, Shi L, Liang J, Hui D, Lau KT. Synthesis of zirconia nanoparticles on carbon nanotubes and their potential for enhancing the fracture toughness of alumina ceramics. Compos Part B Eng. 2008;39(7–8):1136–41.CrossRefGoogle Scholar
  5. 5.
    Li M, Schaffer H, Soboyejo WO. Transformation toughening of NiAl composites reinforced with yttria partially stabilized zirconia particles. J Mater Sci. 2000;35(6):1339–45.CrossRefGoogle Scholar
  6. 6.
    Liu Y, Zhou J, Shen T. Effect of nano-metal particles on the fracture toughness of metal–ceramic composite. Mater Des. 2013;45(6):67–71.CrossRefGoogle Scholar
  7. 7.
    Kuntz JD, Zhan GD, Mukherjee AK. Nanocrystalline-matrix ceramic composites for improved fracture toughness. Mrs Bull. 2004;29(1):22–7.CrossRefGoogle Scholar
  8. 8.
    Rao PG, Iwasa M, Tanaka T, Kondoh I, Inoue T. Preparation and mechanical properties of Al\(_2\)O\(_3\)—15 wt% ZrO\(_2\) composites. Scr Mater. 2003;48(4):437–41.CrossRefGoogle Scholar
  9. 9.
    Szutkowska M, Boniecki M. Subcritical crack growth in zirconia-toughened alumina (ZTA) ceramics. J Mater Process Technol. 2006;175(1):416–20.CrossRefGoogle Scholar
  10. 10.
    Yang G, Li JC, Wang GC, Min SL, Chen TC, Yashima M. Investigation on strengthening and toughening mechanisms of Ce-TZP/Al\(_2\)O\(_3\) nanocomposites. Metall Mater Trans A. 2006;37(6):1969–75.CrossRefGoogle Scholar
  11. 11.
    Basu B, Vleugels J, Biest OVD. ZrO\(_2\)–Al\(_2\)O\(_3\) composites with tailored toughness. J Alloys Compd. 2004;372(1–2):278–84.CrossRefGoogle Scholar
  12. 12.
    Ma W, Wen L, Guan R, Sun X, Li X. Sintering densification, microstructure and transformation behavior of Al\(_2\)O\(_3\)/ZrO\(_2\)(Y\(_2\)O\(_3\)) composites. Mater Sci Eng A. 2008;477(1):100–6.CrossRefGoogle Scholar
  13. 13.
    Xin W, Tian J, Yu X, Yan S, Liu Z, Yin Y. Effect of microstructure on the fracture behavior of micro-nano ZTA composite. Mater Chem Phys. 2008;112(1):213–7.CrossRefGoogle Scholar
  14. 14.
    Hannink RHJ, Kelly PM, Muddle BC. Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc. 2000;83(3):461–87.CrossRefGoogle Scholar
  15. 15.
    Hu J, Zhang Q, Liu Y, Wu G. Phase transformation behaviors of TiNi fibers embedded in an aluminum matrix. J Alloys Compd. 2014;589(5):491–7.CrossRefGoogle Scholar
  16. 16.
    Liang YM, Zhao JH. Effect of zirconia particle size distribution on the toughness of zirconia-containing ceramics. J Mater Sci. 1999;34(9):2175–81.CrossRefGoogle Scholar
  17. 17.
    Wang S, Li Y, Zhang X. Influence of the microstructure evolution of ZrO\(_2\) fiber on the fracture toughness of ZrB\(_2\)–SiC nanocomposite ceramics. Mater Des. 2013;49(49):808–13.CrossRefGoogle Scholar
  18. 18.
    Evans AG, Burlingame N, Drory M, Kriven WM. Martensitic transformations in zirconia–particle size effects and toughening. Acta Metall. 1981;29(2):447–56.CrossRefGoogle Scholar
  19. 19.
    Mcmeeking RM, Evans AG. Mechanics of transformation-toughening in brittle materials. J Am Ceram Soc. 1982;65(5):242–6.CrossRefGoogle Scholar
  20. 20.
    Cai H, Faber KT. Effective dilatational transformation toughening in brittle materials. Scr Metall Mater. 1993;28(9):1161–6.CrossRefGoogle Scholar
  21. 21.
    Li Q, Lv J, Hou J, Zuo H. Crack-tip shielding by the dilatant transformation of particles/fibers embedded in composite materials. Theor Appl Fract Mech. 2015;80:242–52.CrossRefGoogle Scholar
  22. 22.
    He T, Xiao W, Zhang Y, Zhu H. Effect of cooperative grain boundary sliding and migration on dislocation emission from a branched crack tip in deformed nanocrystalline solids. Int J Fract. 2017;206(1):1–10.CrossRefGoogle Scholar
  23. 23.
    He T, Feng M. Influence of nanoscale deformation twins near a slant edge crack tip on crack blunting in nanocrystalline metals. Eng Fract Mech. 2017;184:286–95.CrossRefGoogle Scholar
  24. 24.
    Zhan GD, Kuntz J, Wan J, Garay J, Mukherjee AK. A novel processing route to develop a dense nanocrystalline alumina matrix (\(<100 \text{ nm }\)) nanocomposite material. J Am Ceram Soc. 2003;86(1):200–2002.CrossRefGoogle Scholar
  25. 25.
    Kurland HD, Grabow J, Müller FA. Preparation of ceramic nanospheres by CO laser vaporization (LAVA). J Eur Ceram Soc. 2011;31(14):2559–68.CrossRefGoogle Scholar
  26. 26.
    Bartolomé JF, Smirnov A, Kurland HD, Grabow J, Müller FA. New ZrO\(_2\)/Al\(_2\)O\(_3\) nanocomposites fabricated from hybrid nanoparticles prepared by CO\(_2\) laser co-vaporisation. Sci Rep. 2016;6:20589.CrossRefGoogle Scholar
  27. 27.
    Deville S, Chevalier J, Dauvergne C, Fantozzi G, Bartolomé JF, Moya JS, Torrecillas R. Microstructural investigation of the aging behavior of (3Y-TZP)-Al\(_2\)O\(_3\) composites. J Am Ceram Soc. 2005;88(5):1273–80.CrossRefGoogle Scholar
  28. 28.
    Muskhelishvili NI. Some basic problems of the mathematical theory of elasticity. Math Gaz. 1953;48(365):351.Google Scholar
  29. 29.
    Suo Z. Singularities interacting with interfaces and cracks. Int J Solids Struct. 1989;25(10):1133–42.CrossRefGoogle Scholar
  30. 30.
    Ma L. Fundamental formulation for transformation toughening. Int J Solids Struct. 2010;47(22–23):3214–20.CrossRefzbMATHGoogle Scholar
  31. 31.
    Hirth JP, Lothe J, Mura T. Theory of dislocations. 2nd ed. Hoboken: Wiley; 1983.Google Scholar
  32. 32.
    Zhang T-Y, Li J. Image forces and shielding effects of an edge dislocation near a finite length crack. Acta Metall Mater. 1991;39(11):2739–44.CrossRefGoogle Scholar
  33. 33.
    Rice J, Thomson Robb. Ductile versus brittle behaviour of crystals. Philos Mag. 1974;29(1):73–97.CrossRefGoogle Scholar
  34. 34.
    Callister WD, Rethwisch DG. Materials science and engineering. Hoboken: Wiley; 2011.Google Scholar
  35. 35.
    Zhang HT, Ming Z. Microcracks related to dilational transformation in ceramics. J Mater Sci Lett. 1996;15(23):2055–7.Google Scholar
  36. 36.
    Huang M, Li Z. Dislocation emission criterion from a blunt crack tip. J Mech Phys Solids. 2004;52(9):1991–2003.CrossRefzbMATHGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics 2019

Authors and Affiliations

  1. 1.Department of Engineering Mechanics, Key Laboratory of HydrodynamicsShanghai Jiao Tong UniversityShanghaiChina
  2. 2.School of Aeronautics and AstronauticsShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations