Advertisement

Acta Mechanica Solida Sinica

, Volume 32, Issue 1, pp 17–28 | Cite as

Misfit Strain-Induced Buckling for Transition-Metal Dichalcogenide Lateral Heterostructures: A Molecular Dynamics Study

  • Jin-Wu JiangEmail author
Article
  • 178 Downloads

Abstract

Molecular dynamics simulations are performed to investigate the misfit strain-induced buckling of the transition-metal dichalcogenide (TMD) lateral heterostructures, denoted by the seamless epitaxial growth of different TMDs along the in-plane direction. The Stillinger–Weber potential is utilized to describe both the interaction for each TMD and the coupling between different TMDs, i.e., \(\hbox {MX}_{2}\) (with \(\mathrm{M}=\hbox {Mo}\), W and \(\mathrm{X}=\hbox {S}\), Se, Te). It is found that the misfit strain can induce strong buckling of the freestanding TMD lateral heterostructures of large area, resulting from the TMDs’ atomic-thick nature. The buckling phenomenon occurs in a variety of TMD lateral heterostructures of different compositions and in various patterns. Our findings raise a fundamental mechanical challenge for the structural stability of the freestanding TMD lateral heterostructures.

Keywords

Transition-metal dichalcogenide Lateral heterostructure Stillinger–Weber potential Molecular dynamics simulation 

Notes

Acknowledgements

The work is supported by the Recruitment Program of Global Youth Experts of China, the National Natural Science Foundation of China (NSFC) under Grant No. 11504225, and the Innovation Program of Shanghai Municipal Education Commission under Grant No. 2017-01-07-00-09-E00019.

References

  1. 1.
    Huang C, Wu S, Sanchez AM, Peters JJ, Beanland R, Ross JS. Lateral heterojunctions within monolayer MoSe\(_{2}\)\(\text{ WSe }_{2}\) semiconductors. Nat Mater. 2014;13(12):1096.Google Scholar
  2. 2.
    Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z. Vertical and in-plane heterostructures from WS 2/MoS 2 monolayers. Nat Mater. 2014;13(12):1135.Google Scholar
  3. 3.
    Zhang X-Q, Lin C-H, Tseng Y-W, Huang K-H, Lee Y-H. Synthesis of lateral heterostructures of semiconducting atomic layers. Nano Lett. 2014;15(1):410–5.Google Scholar
  4. 4.
    Duan X, Wang C, Shaw JC, Cheng R, Chen Y, Li H. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat Nanotechnol. 2014;9(12):1024.Google Scholar
  5. 5.
    Chen K, Wan X, Wen J, Xie W, Kang Z, Zeng X. Electronic properties of MoS2–WS2 heterostructures synthesized with two-step lateral epitaxial strategy. Acs Nano. 2015;9(10):9868–76.Google Scholar
  6. 6.
    Chen K, Wan X, Xie W, Wen J, Kang Z, Zeng X. Lateral built-in potential of monolayer MoS2–WS2-in-plane heterostructures by a shortcut growth strategy. Adv Mater. 2015;27(41):6431–7.Google Scholar
  7. 7.
    Gong Y, Lei S, Ye G, Li B, He Y, Keyshar K. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 2015;15(9):6135–41.Google Scholar
  8. 8.
    Chen J, Zhou W, Tang W, Tian B, Zhao X, Xu H. Lateral epitaxy of atomically sharp WSe2/WS2 heterojunctions on silicon dioxide substrates. Chem Mater. 2016;28(20):7194–7.Google Scholar
  9. 9.
    Ling X, Lin Y, Ma Q, Wang Z, Song Y, Yu L. Parallel stitching of 2D materials. Adv Mater. 2016;28(12):2322–9.Google Scholar
  10. 10.
    Liu B, Ma Y, Zhang A, Chen L, Abbas AN, Liu Y. High-performance WSe2 field-effect transistors via controlled formation of in-plane heterojunctions. ACS Nano. 2016;10(5):5153–60.Google Scholar
  11. 11.
    Son Y, Li M-Y, Cheng C-C, Wei K-H, Liu P, Wang QH. Observation of switchable photoresponse of a monolayer WSe2–MoS2 lateral heterostructure via photocurrent spectral atomic force microscopic imaging. Nano Lett. 2016;16(6):3571–7.Google Scholar
  12. 12.
    Chen X, Qiu Y, Yang H, Liu G, Zheng W, Feng W. In-plane mosaic potential growth of large-area 2D layered semiconductors MoS2–MoSe2 lateral heterostructures and photodetector application. ACS Appl Mater Interfaces. 2017;9(2):1684–91.Google Scholar
  13. 13.
    Li MY, Pu J, Huang JK, Miyauchi Y, Matsuda K, Takenobu T. Self-aligned and scalable growth of monolayer WSe2–MoS2 lateral heterojunctions. Adv Funct Mater. 2018;28(17):1706860.Google Scholar
  14. 14.
    Sahoo PK, Memaran S, Xin Y, Balicas L, Gutiérrez HR. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature. 2018;553(7686):63.Google Scholar
  15. 15.
    Li M-Y, Shi Y, Cheng C-C, Lu L-S, Lin Y-C, Tang H-L. Epitaxial growth of a monolayer WSe2–MoS2 lateral pn junction with an atomically sharp interface. Science. 2015;349(6247):524–8.Google Scholar
  16. 16.
    Zhang Z, Chen P, Duan X, Zang K, Luo J, Duan X. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science. 2017;357:eaan6814.Google Scholar
  17. 17.
    Bogaert K, Liu S, Chesin J, Titow D, Gradečak S, Garaj S. Diffusion-mediated synthesis of MoS2/WS2 lateral heterostructures. Nano Lett. 2016;16(8):5129–34.Google Scholar
  18. 18.
    Li H, Wu X, Liu H, Zheng B, Zhang Q, Zhu X. Composition-modulated two-dimensional semiconductor lateral heterostructures via layer-selected atomic substitution. ACS Nano. 2016;11(1):961–7.Google Scholar
  19. 19.
    Mahjouri-Samani M, Lin M-W, Wang K, Lupini AR, Lee J, Basile L. Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors. Nat Commun. 2015;6:7749.Google Scholar
  20. 20.
    Li H, Li P, Huang J-K, Li M-Y, Yang C-W, Shi Y. Laterally stitched heterostructures of transition metal dichalcogenide: chemical vapor deposition growth on lithographically patterned area. ACS Nano. 2016;10(11):10516–23.Google Scholar
  21. 21.
    Ullah F, Sim Y, Le CT, Seong M-J, Jang JI, Rhim SH. Growth and simultaneous valleys manipulation of two-dimensional MoSe2–WSe2 lateral heterostructure. ACS Nano. 2017;11(9):8822–9.Google Scholar
  22. 22.
    Kobayashi Y, Mori S, Maniwa Y, Miyata Y. Bandgap-tunable lateral and vertical heterostructures based on monolayer Mo1-xWxS2 alloys. Nano Res. 2015;8(10):3261–71.Google Scholar
  23. 23.
    Zhang W, Li X, Jiang T, Song J, Lin Y, Zhu L. CVD synthesis of Mo (1- x) W x S 2 and MoS 2 (1- x) Se 2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. Nanoscale. 2015;7(32):13554–60.Google Scholar
  24. 24.
    Yoshida S, Kobayashi Y, Sakurada R, Mori S, Miyata Y, Mogi H. Microscopic basis for the band engineering of Mo 1- x W x S 2-based heterojunction. Sci Rep. 2015;5:14808.Google Scholar
  25. 25.
    Duan X, Wang C, Fan Z, Hao G, Kou L, Halim U. Synthesis of WS2 x Se2-2 x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 2015;16(1):264–9.Google Scholar
  26. 26.
    Liu X, Wu J, Yu W, Chen L, Huang Z, Jiang H. Monolayer WxMo1- xS2 grown by atmospheric pressure chemical vapor deposition: bandgap engineering and field effect transistors. Adv Funct Mater. 2017;27(13):1606469.Google Scholar
  27. 27.
    Aslan OB, Datye IM, Mleczko MJ, Sze Cheung K, Krylyuk S, Bruma A. Probing the optical properties and strain-tuning of ultrathin Mo1-x W x Te2. Nano Lett. 2018;18(4):2485–91.Google Scholar
  28. 28.
    Apte A, Kochat V, Rajak P, Krishnamoorthy A, Manimunda P, Hachtel JA. Structural phase transformation in strained monolayer MoWSe2 alloy. ACS Nano. 2018;12(4):3468–76.Google Scholar
  29. 29.
    Li H, Zhang Q, Duan X, Wu X, Fan X, Zhu X. Lateral growth of composition graded atomic layer MoS2 (1-x) Se2 x nanosheets. J Am Chem Soc. 2015;137(16):5284–7.Google Scholar
  30. 30.
    Zheng S, Sun L, Yin T, Dubrovkin AM, Liu F, Liu Z. Monolayers of WxMo1- xS2 alloy heterostructure with in-plane composition variations. Appl Phys Lett. 2015;106(6):063113.Google Scholar
  31. 31.
    Wu X, Li H, Liu H, Zhuang X, Wang X, Fan X. Spatially composition-modulated two-dimensional WS 2x Se 2 (1- x) nanosheets. Nanoscale. 2017;9(14):4707–12.Google Scholar
  32. 32.
    Li Z, Zheng J, Zhang Y, Zheng C, Woon W-Y, Chuang M-C. Synthesis of ultrathin composition graded doped lateral WSe2/WS2 heterostructures. ACS Appl Mater Interfaces. 2017;9(39):34204–12.Google Scholar
  33. 33.
    Xie S, Tu L, Han Y, Huang L, Kang K, Lao KU. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science. 2018;359(6380):1131–6.Google Scholar
  34. 34.
    Zhang C, Li M-Y, Tersoff J, Han Y, Su Y, Li L-J. Strain distributions and their influence on electronic structures of WSe 2-MoS 2 laterally strained heterojunctions. Nat Nanotechnol. 2018;13(2):152.Google Scholar
  35. 35.
    Alred JM, Zhang Z, Hu Z, Yakobson BI. Interface-induced warping in hybrid two-dimensional materials. Nano Res. 2015;8(6):2015.Google Scholar
  36. 36.
    Shi Z, Zhang Q, Schwingenschlögl U. Alloying as a route to monolayer transition metal dichalcogenides with improved optoelectronic performance: Mo (S1-x Se x) 2 and Mo1-y W y S2. ACS Appl Energy Mater. 2018;1(5):2208–14.Google Scholar
  37. 37.
    Wei W, Dai Y, Niu C, Huang B. Controlling the electronic structures and properties of in-plane transition-metal dichalcogenides quantum wells. Sci Rep. 2015;5:17578.Google Scholar
  38. 38.
    Wei W, Dai Y, Sun Q, Yin N, Han S, Huang B. Electronic structures of in-plane two-dimensional transition-metal dichalcogenide heterostructures. Phys Chem Chem Phys. 2015;17(43):29380–6.Google Scholar
  39. 39.
    Guo Y, Robertson J. Band engineering in transition metal dichalcogenides: stacked versus lateral heterostructures. Appl Phys Lett. 2016;108(23):233104.Google Scholar
  40. 40.
    Wei W, Dai Y, Huang B. In-plane interfacing effects of two-dimensional transition-metal dichalcogenide heterostructures. Phys Chem Chem Phys. 2016;18(23):15632–8.Google Scholar
  41. 41.
    Zhang J, Xie W, Zhao J, Zhang S. Band alignment of two-dimensional lateral heterostructures. 2D Mater. 2016;4(1):015038.Google Scholar
  42. 42.
    Wei W, Dai Y, Huang B. Straintronics in two-dimensional in-plane heterostructures of transition-metal dichalcogenides. Phys Chem Chem Phys. 2016;19(1):663–72.Google Scholar
  43. 43.
    Aras M, Kılıç Ç, Ciraci S. Lateral and vertical heterostructures of transition metal dichalcogenides. J Phys Chem C. 2018;122(3):1547–55.Google Scholar
  44. 44.
    Kang J, Sahin H, Peeters FOM. Tuning carrier confinement in the MoS2/WS2 lateral heterostructure. J Phys Chem C. 2015;119(17):9580–6.Google Scholar
  45. 45.
    An Y, Zhang M, Wu D, Fu Z, Wang K. The electronic transport properties of transition-metal dichalcogenide lateral heterojunctions. J Mater Chem. 2016;4(46):10962–6.Google Scholar
  46. 46.
    Yang Z, Pan J, Liu Q, Wu N, Hu M, Ouyang F. Electronic structures and transport properties of a MoS 2-NbS 2 nanoribbon lateral heterostructure. Phys Chem Chem Phys. 2017;19(2):1303–10.Google Scholar
  47. 47.
    Cao Z, Harb M, Lardhi S, Cavallo L. Impact of interfacial defects on the properties of monolayer transition metal dichalcogenide lateral heterojunctions. J Phys Chem Lett. 2017;8(7):1664–9.Google Scholar
  48. 48.
    Sun J, Lin N, Ren H, Tang C, Yang L, Zhao X. Gas adsorption on MoS 2/WS 2 in-plane heterojunctions and the I-V response: a first principles study. RSC Adv. 2016;6(21):17494–503.Google Scholar
  49. 49.
    Yang Y, Fang WH, Long R. Disparity in photoexcitation dynamics between vertical and lateral MoS2/WSe2 heterojunctions: time-domain simulation emphasizes the importance of donor-acceptor interaction and band alignment. J Phys Chem Lett. 2017;8:5771–8.Google Scholar
  50. 50.
    Sun Q, Dai Y, Ma Y, Yin N, Wei W, Yu L. Design of lateral heterostructure from arsenene and antimonene. 2D Mater. 2016;3(3):035017.Google Scholar
  51. 51.
    Jin H, Li J, Wang B, Yu Y, Wan L, Xu F. Electronics and optoelectronics of lateral heterostructures within monolayer indium monochalcogenides. J Mater Chem C. 2016;4(47):11253–60.Google Scholar
  52. 52.
    Leenaerts O, Vercauteren S, Schoeters B, Partoens B. System-size dependent band alignment in lateral two-dimensional heterostructures. 2D Mater. 2016;3(2):025012.Google Scholar
  53. 53.
    Leenaerts O, Vercauteren S, Partoens B. Band alignment of lateral two-dimensional heterostructures with a transverse dipole. Appl Phys Lett. 2017;110(18):181602.Google Scholar
  54. 54.
    Cheng K, Guo Y, Han N, Su Y, Zhang J, Zhao J. Lateral heterostructures of monolayer group-IV monochalcogenides: band alignment and electronic properties. J Mater Chem C. 2017;5(15):3788–95.Google Scholar
  55. 55.
    Sun Q, Dai Y, Niu C, Ma Y, Wei W, Yu L. Lateral topological crystalline insulator heterostructure. 2D Mater. 2017;4(2):025038.Google Scholar
  56. 56.
    Sun Q, Dai Y, Yin N, Yu L, Ma Y, Wei W. Two-dimensional square transition metal dichalcogenides with lateral heterostructures. Nano Res. 2017;10(11):3909–19.Google Scholar
  57. 57.
    Yuan J, Yu N, Wang J, Xue K-H, Miao X. Design lateral heterostructure of monolayer ZrS2 and HfS2 from first principles calculations. Appl Surf Sci. 2018;436:919–26.Google Scholar
  58. 58.
    Jiang J-W, Zhou Y-P. Parameterization of Stillinger–Weber potential for two-dimensional atomic crystals. Handbook of Stillinger–Weber potential parameters for two-dimensional atomic crystals. The Hague: InTech; 2017.Google Scholar
  59. 59.
    Jiang J-W. Parametrization of Stillinger–Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus. Nanotechnology. 2015;26(31):315706.Google Scholar
  60. 60.
    Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81(1):511–9.Google Scholar
  61. 61.
    Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31(3):1695.Google Scholar
  62. 62.
    Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19.zbMATHGoogle Scholar
  63. 63.
    Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model Simul Mater Sci Eng. 2009;18(1):015012.MathSciNetGoogle Scholar
  64. 64.
    Kushima A, Qian X, Zhao P, Zhang S, Li J. Ripplocations in van der Waals Layers. Nano Lett. 2015;15(2):1302–8.Google Scholar
  65. 65.
    Zhou Y-P, Jiang J-W. Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger–Weber potential. Sci Rep. 2017;7:45516.Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics 2018

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and MechanicsShanghai UniversityShanghaiChina

Personalised recommendations