Advertisement

Effect of Anisotropic Yield Functions on the Accuracy of Material Flow and its Experimental Verification

  • Bingtao Tang
  • Yanshan Lou
Article
  • 12 Downloads

Abstract

This paper evaluates the performance of anisotropic yield functions based on mathematical methods which consider the prediction accuracy of yield stresses and R-values. The anisotropic yield functions being evaluated include one quadratic yield function and six non-quadratic ones. These yield functions are applied to describe the anisotropy of steel sheets and aluminum alloy sheets to evaluate their predictability. The root-mean-square errors (RMSEs) are computed to quantitatively assess their performance. The computation results of RMSEs demonstrate that the Yld2004-18p yield function exhibits the highest accuracy but requires extensive tests to calculate anisotropic parameters. The Yld2000-2d and BBC2000 yield functions are the same and thus have the same prediction accuracy. The application to cylindrical cup drawing shows that, associated with the Yld2004-18p and Yld2000-2d yield functions, the finite element (FE) simulations of cup drawing process can predict cups with six or eight ears. Considering both efficiency and accuracy, the Yld2000-2d and BBC2000 yield functions, which have less anisotropic parameters to be calculated, are recommended for metals with intermediate anisotropy.

Keywords

Anisotropic yield function Sheet metal forming Root-mean-square error 

References

  1. 1.
    Hill R. A theory of the yielding and plastic flow of anisotropic metals. In: Proceedings of the royal society A: mathematical, physical and engineering science. London: Royal Society Publishing; 1948; p. 281–297.Google Scholar
  2. 2.
    Pearce R. Some aspects of anisotropic plasticity in sheet metals. Int J Mech Sci. 1968;10(12):995–1004.CrossRefGoogle Scholar
  3. 3.
    Woodthorpe J, Pearce R. The anomalous behavior of aluminium sheet under balanced biaxial tension. Int J Mech Sci. 1970;12(4):341–7.CrossRefGoogle Scholar
  4. 4.
    Hosford WF. On yield loci of anisotropic cubic metals. In: American Society of Mechanical Engineers, Society of Manufacturing Engineers, editor. Proceedings of the 7th North American metalworking conference. Dearborn: Books on Demand Publishing; 1979; p. 191–197.Google Scholar
  5. 5.
    Logan RW, Hosford WF. Upper-bound anisotropic yield locus calculations assuming \(<\)111\(>\) pencil glide. Int J Mech Sci. 1980;22(7):419–30.CrossRefGoogle Scholar
  6. 6.
    Barlat F, Lian J. Plastic behavior and stretchability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions. Int J Plast. 1989;5(1):51–66.CrossRefGoogle Scholar
  7. 7.
    Barlat F, Lege DJ, Brem JC. A six-component yield function for anisotropic materials. Int J Plast. 1991;7(7):693–712.CrossRefGoogle Scholar
  8. 8.
    Barlat F, Maeda Y, Chung K, Yanagawa M, Brem JC, Hayashida Y, Lege DJ, Matsui K, Murtha SJ, Hattori S, Becker RC, Makosey S. Yield function development for aluminum alloy sheets. J Mech Phys Solids. 1997;45(11/12):1727–63.CrossRefGoogle Scholar
  9. 9.
    Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, Pourboghrat F, Choi S-H, Chu E. Plane stress yield function for aluminum ally sheets—Part I: theory. Int J Plast. 2003;19(9):1297–319.CrossRefMATHGoogle Scholar
  10. 10.
    Banabic D, Kuwabara T, Balan T, Comsa DS, Julean D. Non-quadratic yield criterion for orthotropic sheet metals under plane stress conditions. Int J Mech Sci. 2003;45(5):797–811.CrossRefMATHGoogle Scholar
  11. 11.
    Banabic D, Aretz H, Comsa DS, Paraianu L. An improved analytical description of orthotropy in metallic sheets. Int J Plast. 2005;21(3):493–512.CrossRefMATHGoogle Scholar
  12. 12.
    Paraianu L, Comsa DS, Cosovici G, Jurco P, Banabic D. An improvement of the BBC2000 yield criterion. In: Brucato V, editor. Proceedings of ESAFORM conference. Salerno: Nuova Ipsa Publishing; 2003; p. 158–162.Google Scholar
  13. 13.
    Aretz H. A non-quadratic plane stress yield function for orthotropic sheet metals. J Mater Process Technol. 2005;168(1):1–9.CrossRefGoogle Scholar
  14. 14.
    Barlat F, Aretz H, Yoon JW, Karabin ME, Brem JC, Dick RE. Linear transformation-based anisotropic yield functions. Int J Plast. 2005;21(5):1009–39.CrossRefMATHGoogle Scholar
  15. 15.
    Huh H, Lou YS, Bae G, Lee C. Accuracy analysis of anisotropic yield functions based on the Root-Mean Square Error. In: F Barlat, Moon YH, Lee MG, editors. Proceedings of the 10th international conference. Pohang: American Institute of Physics Publishing; 2010; p. 739–746.Google Scholar
  16. 16.
    Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7(4):308–13.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lou YS, Huh H, Yoon J. Consideration of strength differential effect in sheet metals with symmetric yield functions. Int J Mech Sci. 2013;66(66):214–23.CrossRefGoogle Scholar
  18. 18.
    Stoughton TB, Yoon JW. Anisotropic hardening and non-associated flow in proportional loading of sheet metals. Int J Plast. 2009;25(9):1777–817.CrossRefMATHGoogle Scholar
  19. 19.
    Barlat F, Yoon J, Cazacu O. On linear transformations of stress tensors for the description of plastic anisotropy. Int J Plast. 2007;23(5):876–96.CrossRefMATHGoogle Scholar
  20. 20.
    Yoon JW, Barlat F, Chung K, Pourboghrat F, Yang DY. Earing predictions based on asymmetric nonquadratic yield function. Int J Plast. 2000;16(9):1075–104.CrossRefMATHGoogle Scholar
  21. 21.
    Yoon JW, Dick RE, Barlat F. A new analytical theory for earing generated from anisotropic plasticity. Int J Plast. 2011;27(8):1165–84.CrossRefMATHGoogle Scholar
  22. 22.
    Barros PD, Alves JL, Oliveira M, Menezes L.F. Tension-compression asymmetry modelling: strategies for anisotropy parameters identification. In: Saanouni K, editor. The 12th international conference on numerical methods in industrial forming processes. Troyes: EDP Sciences Publishing; 2016; p. 05002.Google Scholar
  23. 23.
    Barlat F, Lege DJ, Brem JC, Warren CJ. Constitutive behavior for anisotropic materials and application to a 2090 Al-Li alloy. In: Lowe T, Rollett A, Follansbee P, Daehn G, editors. TMS annual meeting. New Orleans: Springer; 1991. p. 189–203.Google Scholar
  24. 24.
    Hughes TJR. Generalization of selective integration procedures to anisotropic and nonlinear media. Int J Numer Methods Eng. 1980;15(9):1413–8.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Yoon JW, Barlat F, Dick RE, Karabin ME. Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. Int J Plast. 2006;22(1):174–93.CrossRefMATHGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2018

Authors and Affiliations

  1. 1.School of Mechanical and Automotive EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
  2. 2.School of Mechanical EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations