Acta Mechanica Solida Sinica

, Volume 31, Issue 4, pp 391–404 | Cite as

Construction and Application of Multivariable Wavelet Finite Element for Flat Shell Analysis

  • Xingwu Zhang
  • Yanfei He
  • Robert X. Gao
  • Jia Geng
  • Xuefeng ChenEmail author
  • Jiawei Xiang


Based on B-spline wavelet on the interval (BSWI) and the multivariable generalized variational principle, the multivariable wavelet finite element for flat shell is constructed by combining the elastic plate element and the Mindlin plate element together. First, the elastic plate element formulation is derived from the generalized potential energy function. Due to its excellent numerical approximation property, BSWI is used as the interpolation function to separate the solving field variables. Second, the multivariable wavelet Mindlin plate element is deduced and constructed according to the multivariable generalized variational principle and BSWI. Third, by following the displacement compatibility requirement and the coordinate transformation method, the multivariable wavelet finite element for flat shell is constructed. The novel advantage of the constructed element is that the solving precision and efficiency can be improved because the generalized displacement field variables and stress field variables are interpolated and solved independently. Finally, several numerical examples including bending and vibration analyses are given to verify the constructed element and method.


B-spline wavelet on the interval Elastic plate Mindlin plate Flat shell Multivariable 



This work was supported by the National Natural Science Foundation of China (No. 51775408), the Project funded by the Key Laboratory of Product Quality Assurance & Diagnosis (No. 2014SZS14-P05) and the open foundation of Zhejiang Provincial Key Laboratory of Laser Processing Robot/Key Laboratory of Laser Precision Processing & Detection (lzsy-12).


  1. 1.
    Chapelle D, Bathe KJ. The finite element analysis of shells—fundamentals. Berlin: Springer; 2003.CrossRefGoogle Scholar
  2. 2.
    Bouayed K, Hamdi MA. Finite element analysis of the dynamic behavior of a laminated windscreen with frequency dependent viscoelastic core. J Acoust Soc Am. 2012;132:757–66.CrossRefGoogle Scholar
  3. 3.
    Huang YH, Ma CC. Experimental measurements and finite element analysis of the coupled vibrational characteristics of piezoelectric shells. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59:785–98.CrossRefGoogle Scholar
  4. 4.
    Schwarze M, Reese S. A reduced integration solid-shell finite element based on the EAS and the ANS concept-large deformation problems. Int J Numer Methods Eng. 2010;85:289–329.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Jeon HM, Lee PS, Bathe KJ. The MITC3 shell finite element enriched by interpolation covers. Comput Struct. 2013;134:128–42.CrossRefGoogle Scholar
  6. 6.
    Cinefra M, Carrera E, Valvano S. Refined shell elements for the analysis of multilayered structures with piezoelectric layers. In: 6th ECCOMAS conference on smart structures and materials, Politecnico di Torino, 2013, 24–26 June.Google Scholar
  7. 7.
    Wang G, Cui XY, Liang ZM, Li GY. A coupled smoothed finite element method for structural–acoustic analysis of shells. Eng Anal Bound Elem. 2015;61:207–17.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cinefra M, Carrera E. Shell finite elements for the analysis of multifield problems in multilayered composite structures. Appl Mech Mater. 2016;828:215–36.CrossRefGoogle Scholar
  9. 9.
    Cohen A. Numerical analysis of wavelet method. Amsterdam: Elsevier Press; 2003.zbMATHGoogle Scholar
  10. 10.
    Li B, Chen X. Wavelet-based numerical analysis: a review and classification. Finite Elem Anal Des. 2014;81:14–31.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yang ZB, Chen XF, Xie Y, Miao HH, Gao JJ, Qi KZ. Hybrid two-step method of damage detection for plate-like structures. Struct Control Health Monit. 2016;23(2):267–85.CrossRefGoogle Scholar
  12. 12.
    Zhang XW, Gao RX, Yan RQ, Chen XF, Sun C, Yang ZB. Analysis of laminated plates and shells using B-spline wavelet on interval finite element. Int J Struct Stab Dyn. 2017;17(4):1750062.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zhang XW, Chen XF, Yang ZB, Shen ZJ. Multivariable wavelet finite element for flexible skew thin plate analysis. Sci China Technol Sci. 2014;57(8):1532–40.CrossRefGoogle Scholar
  14. 14.
    Zhang X, Chen X, Yang Z, et al. A stochastic wavelet finite element method for 1D and 2D structures analysis. Shock Vib. 2014;2014(5):167–70.Google Scholar
  15. 15.
    Zhang XW, Gao RX, Yan RQ, Chen XF, Sun C, Yang ZB. B-spline wavelet on interval finite element method for static and vibration analysis of stiffened flexible thin plate. CMC Comput Mater Contin. 2016;52:53–71.Google Scholar
  16. 16.
    Samaratunga D, Jha R, Gopalakrishnan S. Wavelet spectral finite element for wave propagation in shear deformable laminated composite plates. Compos Struct. 2014;108:341–53.CrossRefGoogle Scholar
  17. 17.
    Yang Z, Chen X, He Y, et al. The analysis of curved beam using B-spline wavelet on interval finite element method. Shock Vib. 2014;2014(3):67–75.Google Scholar
  18. 18.
    Zuo H, Yang ZB, Chen XF. Analysis of laminated composite plates using wavelet finite element method and higher-order plate theory. Compos Struct. 2015;131:248–58.CrossRefGoogle Scholar
  19. 19.
    Yang ZB, Chen XF, Zhang XW. Free vibration and buckling analysis of plates using B-spline wavelet on the interval Mindlin element. Appl Math Model. 2013;37(5):3449–66.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yang ZB, Chen XF, Li X. Wave motion analysis in arch structures via wavelet finite element method. J Sound Vib. 2014;333(2):446–69.CrossRefGoogle Scholar
  21. 21.
    Mozgaleva ML, Akimov PA. About verification of wavelet-based discrete-continual finite element method for three-dimensional problems of structural analysis part 1: structures with constant physical and geometrical parameters along basic direction. Appl Mech Mater. 2015;709:105–8.CrossRefGoogle Scholar
  22. 22.
    Mozgaleva ML, Akimov PA. About verification of wavelet-based discrete-continual finite element method for three-dimensional problems of structural analysis part 2: structural with piecewise constant physical and geometrical parameters along basic direction. Appl Mech Mater. 2015;709:109–12.CrossRefGoogle Scholar
  23. 23.
    Tanaka S, Suzuki H, Ueda S, Sannomaru S. An extended wavelet Galerkin method with a high-order B-spline for 2D crack problems. Acta Mech. 2015;226:2159–75.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Xue XX, Zhang XW, Li B, Qiao BJ, Chen XF. Modified Hermitian cubic spline wavelet on interval finite element for wave propagation and load identification. Finite Elem Anal Des. 2014;91:48–58.CrossRefGoogle Scholar
  25. 25.
    Xue XX, Chen XF, Zhang XW, Qiao BJ. Hermitian plane wavelet finite element method: wave propagation and load identification. Comput Math Appl. 2016;72:2920–42.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Geng J, Zhang XW, Chen XF, Xue XX. High-frequency vibration analysis of thin plate based on wavelet-based FEM using B-spine wavelet on interval. Sci China Technol Sci. 2017;60:792–806.CrossRefGoogle Scholar
  27. 27.
    Geng J, Zhang XW, Chen XF. High-frequency dynamic response of thin plate with uncertain parameter based on average wavelet finite element method (AWFEM). Mech Syst Signal Process. 2018;110:180–92.CrossRefGoogle Scholar
  28. 28.
    Han J, Ren W, Huang Y. A multivariable wavelet-based finite element method and its application to thick plates. Finite Elem Anal Des. 2005;41:821–33.CrossRefGoogle Scholar
  29. 29.
    Zhang XW, Chen XF, He ZJ, Yang ZB. The analysis of shallow shells based on multivariable wavelet finite element method. Acta Mech Solida Sin. 2011;24:450–60.CrossRefGoogle Scholar
  30. 30.
    Zhang XW, Zuo H, Liu JX, Chen XF, Yang ZB. Analysis of shallow hyperbolic shell by different kinds of wavelet elements based on B-spline wavelet on the interval. Appl Math Model. 2016;40:1914–28.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhang XW, Gao RX, Yan RQ, Chen XF, Sun C, Yang ZB. Multivariable wavelet finite element-based vibration model for quantitative crack identification by using particle swarm optimization. J Sound Vib. 2016;375:200–16.CrossRefGoogle Scholar
  32. 32.
    Wang Y, Wu Q. Crack detection in a pipe by adaptive subspace iteration algorithm and least square support vector regression. J VibroEng. 2014;16:2800–12.Google Scholar
  33. 33.
    Zhong YT, Xiang JW. Construction of wavelet-based elements for static and stability analysis of elastic problems. Acta Mech Solida Sin. 2011;24:355–64.CrossRefGoogle Scholar
  34. 34.
    Chui CK, Quak E. Wavelets on a bounded interval. Numer Methods Approx Theory. 1992;1:53–7.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Quak E, Weyrich N. Decomposition and reconstruction algorithms for spline wavelets on a bounded interval. Appl Comput Harmon Anal. 1994;1:217–31.MathSciNetCrossRefGoogle Scholar
  36. 36.
    Goswami JC, Chan AK, Chui CK. On solving first-kind integral equations using wavelets on a bounded interval. IEEE Trans Antennas Propag. 1995;43:614–22.MathSciNetCrossRefGoogle Scholar
  37. 37.
    Bathe KJ, Wilson EL. Numerical methods in finite element analysis. New York: Prentice-hall Inc.; 1976.zbMATHGoogle Scholar
  38. 38.
    Shen PC. Multivariable spline finite element method. Beijing: Science press; 1997.Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Manufacturing Systems EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.School of Mechanical EngineeringXi’an Jiaotong UniversityXi’anChina
  3. 3.Department of Mechanical EngineeringCase Western Reserve UniversityClevelandUSA
  4. 4.Zhejiang Provincial Key Laboratory of Laser Processing Robot/Key Laboratory of Laser Precision Processing & DetectionWenzhou UniversityWenzhouChina

Personalised recommendations