Acta Mechanica Solida Sinica

, Volume 31, Issue 3, pp 322–331 | Cite as

Plastic Strain Energy Model for Rock Salt Under Fatigue Loading

  • M. M. HeEmail author
  • N. Li
  • B. Q. Huang
  • C. H. Zhu
  • Y. S. Chen
Original Paper


The fatigue test for rock salt is conducted to investigate the effects of stress amplitude, loading frequency and loading rate on the plastic strain energy, from which the evaluation rule of the plastic strain energy is analyzed, which is divided into three stages: cyclic hardening, saturation and cyclic softening. The total accumulated plastic strain energy only depends on the mechanical behavior of rock salt, but is immune to the loading conditions. A novel model for fatigue life prediction is proposed based on the invariance of the total plastic dissipation energy and the stability of the plastic energy per cycle.


Rock salt Fatigue life Plastic energy 



This study is sponsored by the National Natural Science Foundation of China (Nos. 51179153 and 11572246). The financial support provided by these sponsors is greatly appreciated.


  1. 1.
    Liang WG, Zhao YS, Xu SG, Dusseault MB. Effect of strain rate on the mechanical properties of salt rock. Int J Rock Mech Min Sci. 2011;48:161–7.CrossRefGoogle Scholar
  2. 2.
    Liang WG, Zhang CD, Gao HB, Yang XQ, Xu SG, Zhao YS. Experiments on mechanical properties of salt rocks under cyclic loading. J Rock Mech Geotech Eng. 2012;4:54–61.CrossRefGoogle Scholar
  3. 3.
    Hunsche U, Albercht H. Results of true triaxial strength tests on rock salt. Eng Fract Mech. 1990;35:867–77.CrossRefGoogle Scholar
  4. 4.
    Senseny PE, Hansen FD, Russell JE. Mechanical behaviour of rock salt: phenomenology and micromechanisms. Int J Rock Mech Min Sci. 1992;29:363–78.CrossRefGoogle Scholar
  5. 5.
    Zhang H, Wang Z, Zheng Y, Duan P, Ding S. Study on tri-axial creep experiment and constitute relation of different rock salt. Saf Sci. 2012;50:801–5.CrossRefGoogle Scholar
  6. 6.
    Yang C, Daemen JJK, Yin JH. Experimental investigation of creep behavior of salt rock. Int J Rock Mech Min Sci. 1999;36:233–42.CrossRefGoogle Scholar
  7. 7.
    Liang W, Yang C, Zhao Y. Experimental investigation of mechanical properties of bedded salt rock. Int J Rock Mech Min Sci. 2007;44:400–11.CrossRefGoogle Scholar
  8. 8.
    Aubertin M, Julien MR, Servant S, Gill DE. A rate-dependent model fort he ductile behavior of salt rocks. Can Geotech J. 1999;36:660–74.CrossRefGoogle Scholar
  9. 9.
    Hamami M. Simultaneous effect of loading rate and confining pressure on the deviator evolution in rock salt. Int J Rock Mech Min Sci. 1999;36:827–31.CrossRefGoogle Scholar
  10. 10.
    Dubey RK, Gairola VK. Influence of stress rate on rheology-an experimental study on rock salt of Simla Himalaya. Geotech Geol Eng. 2005;23:757–72.CrossRefGoogle Scholar
  11. 11.
    Jin J, Cristescu ND. An elastic/viscoplastic model for transient creep of rock salt. Int J Plast. 1998;14:85–107.CrossRefGoogle Scholar
  12. 12.
    Wawersik WR, Zeuch DH. Modeling and mechanistic interpretation of creep of rock salt below \(200^{\circ }\text{ C }\). Tectonophysics. 1986;121:125–52.CrossRefGoogle Scholar
  13. 13.
    Liang WG, Xu SG, Zhao YS. Experimental study of temperature effects on physical and mechanical characteristics of salt rock. Rock Mech Rock Eng. 2006;39:469–82.CrossRefGoogle Scholar
  14. 14.
    Sheinin VI, Blokhin DI. Features of thermomechanical effects in rock salt sample under uniaxial compression. J Min Sci. 2012;48:39–45.CrossRefGoogle Scholar
  15. 15.
    Kwon S, Kim J. Effect of temperature variation on a rock salt deformation—a case study. Min Techol A. 2005;114:89–98.CrossRefGoogle Scholar
  16. 16.
    Zhou H, Hu DW, Zhang F, Shao JF. A thermo-plastic/viscoplastic damage model for geomaterials. Acta Mechanica Solida Sinica. 2011;24(3):195–208.CrossRefGoogle Scholar
  17. 17.
    Wang GJ. A new constitutive creep-damage model for rocksalt. Int J Rock Mech Min Sci. 2004;41:364.CrossRefGoogle Scholar
  18. 18.
    Weidinger P, Hampel A, Blum W, Hunsche U. Creep behavior of natural rock salt and its description with the composite model. Mater Sci Eng A. 1997;234–236:646–8.CrossRefGoogle Scholar
  19. 19.
    Janos LU, Christopher JS, Hendrik JZ. Weakening of rock salt by water during long-term creep. Nature. 1986;324:554–7.CrossRefGoogle Scholar
  20. 20.
    Fuenkajorn K, Phueakphum D. Effects of cyclic loading on mechanical properties of Maha Sarakham salt. Eng Geol. 2010;112:43–52.CrossRefGoogle Scholar
  21. 21.
    Liu J, Xie H, Hou Z, Yang C, Chen L. Damage evolution of rock salt under cyclic loading in unixial tests. Acta Geotech. 2014;9:153–60.CrossRefGoogle Scholar
  22. 22.
    Guo Y, Yang C, Mao H. Mechanical properties of Jintan rock salt under complex stress paths. Int J Rock Mech Min Sci. 2012;56:54–61.CrossRefGoogle Scholar
  23. 23.
    Ren S, Bai YM, Zhang JP, Jiang DY, Yang CH. Experimental investigation of the fatigue properties of salt rock. Int J Rock Mech Min Sci. 2013;64:68–72.CrossRefGoogle Scholar
  24. 24.
    Cristescu N. A general constitutive equation for transient and stationary creep of rock salt. Int J Rock Mech Min Sci Geomech Abstr. 1993;30:125–39.CrossRefGoogle Scholar
  25. 25.
    Liu EL, He SM. Effects of cyclic dynamic loading on the mechanical properties of intact rock samples under confining pressure conditions. Eng Geol. 2012;125:81–91.CrossRefGoogle Scholar
  26. 26.
    Xiao JQ, Ding DX, Jiang FL, Gen X. Fatigue damage variable and evolution of rock subjected to cyclic loading. Int J Rock Mech Min Sci. 2010;47:461–8.CrossRefGoogle Scholar
  27. 27.
    Xiao JQ, Ding DX, Gen X. Inverted S-shaped model for nonlinear fatigue damage of rock. Int J Rock Mech Min Sci. 2009;46:643–8.CrossRefGoogle Scholar
  28. 28.
    Ellyin F, Kujawski D. Plastic strain energy in fatigue failure. ASME J Press Vessel Technol. 1984;106:342–7.CrossRefGoogle Scholar
  29. 29.
    Feltner CE, Morrow JD. Microplastic strain hysteresis energy as a criterion for fatigue fracture. ASME J Basic Eng. 1961;83:15–22.CrossRefGoogle Scholar
  30. 30.
    Abel A, Muir M. Mechanical hysteresis and the initial stages of fatigue. Met Sci. 1975;9:459–63.CrossRefGoogle Scholar
  31. 31.
    Lefebvre D, Ellyin F. Cyclic response and inelastic strain energy in low cycle fatigue. Int J Fatigue. 1984;6(1):9–15.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2018

Authors and Affiliations

  • M. M. He
    • 1
    Email author
  • N. Li
    • 1
    • 2
  • B. Q. Huang
    • 3
  • C. H. Zhu
    • 1
  • Y. S. Chen
    • 1
    • 4
  1. 1.Institute of Geotechnical EngineeringXi’an University of TechnologyXi’anChina
  2. 2.State Key Laboratory of Eco-hydraulics in Northwest Arid RegionXi’an University of TechnologyXi’anChina
  3. 3.College of Information Engineering and AutomationKunming University of Science and TechnologyKunmingChina
  4. 4.Shaanxi Key Laboratory of Loess Mechanics and EngineeringXi’an University of TechnologyXi’anChina

Personalised recommendations