Acta Mechanica Solida Sinica

, Volume 31, Issue 2, pp 174–186 | Cite as

Effect of Randomness of Interfacial Properties on Fracture Behavior of Concrete Under Uniaxial Tension

Article
  • 6 Downloads

Abstract

Interfacial transition zones (ITZs) between aggregates and mortar are the weakest parts in concrete. The random aggregate generation and packing algorithm was utilized to create a two-phase concrete model, and the zero-thickness cohesive elements with different normal distribution parameters were used to model the ITZs with random mechanical properties. A number of uniaxial tension-induced fracture simulations were carried out, and the effects of the random parameters on the fracture behavior of concrete were statistically analyzed. The results show that, different from the dissipated fracture energy, the peak load of concrete does not always obey a normal distribution, when the elastic stiffness, tensile strength, or fracture energy of ITZs is normally distributed. The tensile strength of the ITZs has a significant effect on the fracture behavior of concrete, and its large standard deviation leads to obvious diversity of the fracture path in both location and shape.

Keywords

Interface transition zone Random parameter Concrete Fracture 

Notes

Acknowledgements

This work is supported by the National Basic Research Program of China (973 Program: 2011CB013800).

References

  1. 1.
    Unger JF, Eckardt S. Multiscale modeling of concrete. Arch Comput Methods Eng. 2011;18(3):341–93.CrossRefMATHGoogle Scholar
  2. 2.
    Simsiriwong J, Sullivan RW, Hilton HH. Master creep compliance curve for random viscoelastic material properties. In: Antoun B, Qi HJ, Hall R, Tandon GP, Lu H, Lu C, et al., editors. Challenges in mechanics of time-dependent materials and processes in conventional and multifunctional materials, volume 2: proceedings of the 2013 annual conference on experimental and applied mechanics. Cham: Springer; 2014. p. 41–7.Google Scholar
  3. 3.
    Yang Z, Frank Xu X. A heterogeneous cohesive model for quasi-brittle materials considering spatially varying random fracture properties. Comput Methods Appl Mech Eng. 2008;197(45–48):4027–39.CrossRefMATHGoogle Scholar
  4. 4.
    Su XT, Yang ZJ, Liu GH. Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials: a 3D study. Int J Solids Struct. 2010;47(17):2336–45.CrossRefMATHGoogle Scholar
  5. 5.
    Huang Y, Yan D, Yang Z, Liu G. 2D and 3D homogenization and fracture analysis of concrete based on in-situ X-ray Computed Tomography images and Monte Carlo simulations. Eng Fract Mech. 2016;163:37–54.CrossRefGoogle Scholar
  6. 6.
    Fu G, Dekelbab W. 3-D random packing of polydisperse particles and concrete aggregate grading. Powder Technol. 2003;133(1–3):147–55.CrossRefGoogle Scholar
  7. 7.
    Leite JPB, Slowik V, Mihashi H. Computer simulation of fracture processes of concrete using mesolevel models of lattice structures. Cem Concr Res. 2004;34(6):1025–33.CrossRefGoogle Scholar
  8. 8.
    Skarżyński Ł, Tejchman J. Calculations of fracture process zones on meso-scale in notched concrete beams subjected to three-point bending. Eur J Mech A/Solids. 2010;29(4):746–60.CrossRefGoogle Scholar
  9. 9.
    Wang XF, Yang ZJ, Yates JR, Jivkov AP, Zhang C. Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores. Constr Build Mater. 2015;75:35–45.CrossRefGoogle Scholar
  10. 10.
    Diamond S, Huang J. The ITZ in concrete: a different view based on image analysis and SEM observations. Cem Concr Compos. 2001;23(2–3):179–88.CrossRefGoogle Scholar
  11. 11.
    Grondin F, Matallah M. How to consider the Interfacial Transition Zones in the finite element modelling of concrete? Cem Concr Res. 2014;58:67–75.CrossRefGoogle Scholar
  12. 12.
    Elsharief A, Cohen MD, Olek J. Influence of aggregate size, water cement ratio and age on the microstructure of the interfacial transition zone. Cem Concr Res. 2003;33(11):1837–49.CrossRefGoogle Scholar
  13. 13.
    Gao Y, De Schutter G, Ye G, Huang H, Tan Z, Wu K. Porosity characterization of ITZ in cementitious composites: concentric expansion and overflow criterion. Constr Build Mater. 2013;38:1051–7.CrossRefGoogle Scholar
  14. 14.
    Gao Y, De Schutter G, Ye G, Tan Z, Wu K. The ITZ microstructure, thickness and porosity in blended cementitious composite: effects of curing age, water to binder ratio and aggregate content. Compos Part B Eng. 2014;60:1–13.CrossRefGoogle Scholar
  15. 15.
    Hong L, Gu X, Lin F. Influence of aggregate surface roughness on mechanical properties of interface and concrete. Constr Build Mater. 2014;65:338–49.CrossRefGoogle Scholar
  16. 16.
    Ouyang W, Chen J, Jiang M. Evolution of surface hardness of concrete under sulfate attack. Constr Build Mater. 2014;53:419–24.CrossRefGoogle Scholar
  17. 17.
    Xu Y, Chen S. A method for modeling the damage behavior of concrete with a three-phase mesostructure. Constr Build Mater. 2016;102:26–38.CrossRefGoogle Scholar
  18. 18.
    Rodrigues EA, Manzoli OL, Bitencourt LAG Jr, Bittencourt TN. 2D mesoscale model for concrete based on the use of interface element with a high aspect ratio. Int J Solids Struct. 2016;94–95:112–24.CrossRefGoogle Scholar
  19. 19.
    Li S, Li Q. Method of meshing ITZ structure in 3D meso-level finite element analysis for concrete. Finite Elem Anal Des. 2015;93:96–106.CrossRefGoogle Scholar
  20. 20.
    Manzoli OL, Maedo MA, Bitencourt LAG, Rodrigues EA. On the use of finite elements with a high aspect ratio for modeling cracks in quasi-brittle materials. Eng Fract Mech. 2016;153:151–70.CrossRefGoogle Scholar
  21. 21.
    Dong W, Wu Z, Zhou X, Wang N, Kastiukas G. An experimental study on crack propagation at rock-concrete interface using digital image correlation technique. Eng Fract Mech. 2017;171:50–63.CrossRefGoogle Scholar
  22. 22.
    Segura JM, Carol I. Numerical modelling of pressurized fracture evolution in concrete using zero-thickness interface elements. Eng Fract Mech. 2010;77(9):1386–99.CrossRefGoogle Scholar
  23. 23.
    Yin A, Yang X, Zhang C, Zeng G, Yang Z. Three-dimensional heterogeneous fracture simulation of asphalt mixture under uniaxial tension with cohesive crack model. Constr Build Mater. 2015;76:103–17.CrossRefGoogle Scholar
  24. 24.
    Yin A, Yang X, Gao H, Zhu H. Tensile fracture simulation of random heterogeneous asphalt mixture with cohesive crack model. Eng Fract Mech. 2012;92:40–55.CrossRefGoogle Scholar
  25. 25.
    Zhang C, Yang X, Gao H, Zhu H. Heterogeneous fracture simulation of three-point bending plain-concrete beam with double notches. Acta Mech Solida Sin. 2016;29(3):232–44.CrossRefGoogle Scholar
  26. 26.
    Wriggers P, Moftah SO. Mesoscale models for concrete: homogenisation and damage behaviour. Finite Elem Anal Des. 2006;42(7):623–36.CrossRefGoogle Scholar
  27. 27.
    Grassl P, Jirásek M. Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension. Int J Solids Struct. 2010;47(7–8):957–68.CrossRefMATHGoogle Scholar
  28. 28.
    Hordijk DA. Local approach to fatigue of concrete. Ph.D. thesis, Delft University of Technology; 1991.Google Scholar
  29. 29.
    Hogg RV, Tanis E, Dale Z. Probability and statistical inference. 6th ed. Upper Saddle River: Prentice Hall; 2001.Google Scholar
  30. 30.
    Nolan D, Terry S. Stat labs: mathematical statistics through applications. 1st ed. New York: Springer; 2000.MATHGoogle Scholar
  31. 31.
    Drezner Z, Turel O. Normalizing variables with too-frequent values using a Kolmogorov–Smirnov test: a practical approach. Comput Ind Eng. 2011;61(4):1240–4.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2018

Authors and Affiliations

  1. 1.School of Civil Engineering and MechanicsHuazhong University of Science and TechnologyWuhanChina
  2. 2.Hubei Key Laboratory of Engineering Structural Analysis and Safety AssessmentWuhanChina

Personalised recommendations