Advertisement

Acta Mechanica Solida Sinica

, Volume 31, Issue 2, pp 127–140 | Cite as

Electromechanical Fields Near a Circular PN Junction Between Two Piezoelectric Semiconductors

  • Yixun Luo
  • Ruoran Cheng
  • Chunli ZhangEmail author
  • Weiqiu Chen
  • Jiashi YangEmail author
Original Paper

Abstract

We study electromechanical fields near the interface between a circular piezoelectric semiconductor cylinder and another piezoelectric semiconductor in which it is embedded. The cylinder is p-doped. The surrounding material is n-doped. The phenomenological theory of piezoelectric semiconductors consisting of the equations of piezoelectricity and the conservation of charge for holes and electrons is used. The theory is linearized for small carrier concentration perturbations. An analytical solution is obtained, showing the formation of a PN junction near the interface. Various electromechanical fields associated with the junction are calculated. The effects of a few physical parameters are examined.

Keywords

Piezoelectric semiconductors Cylinder Carriers PN junction Electromechanical coupling 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11672265, 11621062, and 11202182), the Fundamental Research Funds for the Central Universities (Nos. 2016QNA4026 and 2016XZZX001-05), and the open foundation of Zhejiang Provincial Top Key Discipline of Mechanical Engineering.

References

  1. 1.
    Wang ZL. Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-from materials to nanodevices. Adv. Mater. 2003;15(5):432–6.CrossRefGoogle Scholar
  2. 2.
    Wang ZL. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today. 2010;5(6):540–52.CrossRefGoogle Scholar
  3. 3.
    Kumar B, Kim SW. Recent advances in power generation through piezoelectric nanogenerators. J Mater Chem. 2011;21(47):18946–58.CrossRefGoogle Scholar
  4. 4.
    Lee KY, Kumar B, Seo JS, Kim KH, Sohn JI, Cha SN, Choi D, Wang ZL, Kim SW. P-type polymer-hybridized high-performance piezoelectric nanogenerators. Nano Lett. 2012;12(4):1959–64.CrossRefGoogle Scholar
  5. 5.
    Lee KY, Bae J, Kim SM, Lee JH, Yoon GC, Gupta MK, Kim SJ, Kim H, Park JJ, Kim SW. Depletion width engineering via surface modification for high performance semiconductor piezoelectric nanogenerators. Nano Energy. 2014;8(9):165–73.CrossRefGoogle Scholar
  6. 6.
    Gao YF, Wang ZL. Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 2009;9(3):1103–10.CrossRefGoogle Scholar
  7. 7.
    Hu YF, Chang YL, Fei P, Snyder RL, Wang ZL. Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects. ACS Nano. 2010;4(2):1234–40.CrossRefGoogle Scholar
  8. 8.
    Araneo R, Lovat G, Burghignoli P, Falconi C. Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry. Adv Mater. 2012;24(34):4719–24.CrossRefGoogle Scholar
  9. 9.
    Ji JL, Zhou ZY, Yang X, Zhang WD, Sang SB, Li PW. One-dimensional nano-interconnection formation. Small. 2013;9(18):3014–29.CrossRefGoogle Scholar
  10. 10.
    Shen Y, Hong J, Xu S, Lin SS, Fang H, Zhang S, Ding Y, Snyder RL, Wang ZL. A general approach for fabricating arc-shaped composite nanowire arrays by pulsed laser deposition. Adv Funct Mater. 2010;20(5):703–7.CrossRefGoogle Scholar
  11. 11.
    Chen TT, Cheng CL, Fu SP, Chen YF. Photoelastic effect in ZnO nanorods. Nanotechnology. 2007;18:225705.CrossRefGoogle Scholar
  12. 12.
    Yoo J, Lee CH, Doh YJ, Jung HS, Yi GC. Modulation doping in ZnO nanorods for electrical nanodevice application. Appl Phys Lett. 2009;94(22):99.CrossRefGoogle Scholar
  13. 13.
    Xue HZ, Pan N, Li M, Wu YK, Wang XP, Hou JG. Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence. Nanotechnology. 2010;21(21):215701.CrossRefGoogle Scholar
  14. 14.
    Gao PX, Song JH, Liu J, Wang ZL. Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Adv Mater. 2007;19(1):67–72.CrossRefGoogle Scholar
  15. 15.
    Choi MY, Choi D, Jin MJ, Kim I, Kim SH, Choi JY, Lee SY, Kim JM, Kim SW. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv Mater. 2009;21(21):2185–9.CrossRefGoogle Scholar
  16. 16.
    Romano G, Mantini G, Garlo AD, D’Amico A, Falconi C, Wang ZL. Piezoelectric potential in vertically aligned nanowires for high output nanogenerators. Nanotechnology. 2011;22(46):465401.CrossRefGoogle Scholar
  17. 17.
    Asthana A, Ardakani HA, Yap YK, Yassar RS. Real time observation of mechanically triggered piezoelectric current in individual ZnO nanobelts. J Mater Chem C. 2014;2(20):3995–4004.CrossRefGoogle Scholar
  18. 18.
    Liao QL, Zhang Z, Zhang XH, Mohr M, Zhang Y, Fecht HJ. Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting. Nano Res. 2014;7(6):917–28.CrossRefGoogle Scholar
  19. 19.
    Wang XD, Zhou J, Song JH, Liu J, Xu NS, Wang ZL. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 2006;6(12):2768–72.CrossRefGoogle Scholar
  20. 20.
    Buyukkose S, Hernández-Mínguez A, Vratzov B, Somaschini C, Geelhaar L, Riechert H, Wilfred W, Santos P. High-frequency acoustic charge transport in GaAs nanowires. Nanotechnology. 2014;25(13):135204.CrossRefGoogle Scholar
  21. 21.
    Yu J, Ippolito SJ, Wlodarski W, Strano M, Kalantar-Zadeh K. Nanorod based shottky contact gas sensors in reversed bias condition. Nanotechnology. 2010;21(26):265502.CrossRefGoogle Scholar
  22. 22.
    Hutson AR, White DL. Elastic wave propagation in piezoelectric semiconductors. J Appl Phys. 1962;33(1):40–7.CrossRefGoogle Scholar
  23. 23.
    Auld BA. Acoustic fields and waves in solids, vol. I. New York: Wiley; 1973.Google Scholar
  24. 24.
    Pierret RF. Semiconductor fundamentals. Massachusetts: Addison-Wesley; 1988.Google Scholar
  25. 25.
    Wauer J, Suherman S. Thickness vibrations of a piezo-semiconducting plate layer. Int J Eng Sci. 1997;35(15):1387–404.CrossRefGoogle Scholar
  26. 26.
    Li P, Jin F, Yang JS. Effects of semiconduction on electromechanical energy conversion in piezoelectrics. Smart Mater Struct. 2015;24(2):025021.CrossRefGoogle Scholar
  27. 27.
    Gu CL, Jin F. Shear-horizontal surface waves in a half-space of piezoelectric semiconductors. Philos Mag Lett. 2015;95(2):92–100.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yang JS, Song YC, Soh AK. Analysis of a circular piezoelectric semiconductor embedded in a piezoelectric semiconductor substrate. Arch Appl Mech. 2006;76(7–8):381–90.CrossRefGoogle Scholar
  29. 29.
    Hu YT, Zeng Y, Yang JS. A mode III crack in a piezoelectric semiconductor of crystals with 6 mm symmetry. Int J Solids Struct. 2007;44(11–12):3928–38.CrossRefGoogle Scholar
  30. 30.
    Sladek J, Sladek V, Pan E, Young DL. Dynamic anti-plane crack analysis in functional graded piezoelectric semiconductor crystals. CMES. 2014;99(4):273–96.MathSciNetzbMATHGoogle Scholar
  31. 31.
    Sladek J, Sladek V, Pan E, Münsche M. Fracture analysis in piezoelectric semiconductors under a thermal load. Eng Fract Mech. 2014;126:27–39.CrossRefGoogle Scholar
  32. 32.
    Zhao MH, Pan YB, Fan CY, Xu CT. Extended displacement discontinuity method for analysis of cracks in 2D piezoelectric semiconductors. Int J Solids Struct. 2017;94–95(5):50–9.CrossRefGoogle Scholar
  33. 33.
    Fan CY, Yan Y, Xu GT, Zhao MH. Piezoelectric-conductor iterative method for analysis of cracks in piezoelectric semiconductors via the finite element method. Eng Fract Mech. 2016;165:183–96.CrossRefGoogle Scholar
  34. 34.
    Zhao MH, Li Y, Yan Y, Fan CY. Singularity analysis of planar cracks in three-dimensional piezoelectric semiconductors via extended displacement discontinuity boundary integral equation method. Eng Anal Bound Elem. 2016;67:115–25.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zhang CL, Wang XY, Chen WQ, Yang JS. Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod. J Zhejiang Univ Sci A. 2016;17(1):37–44.CrossRefGoogle Scholar
  36. 36.
    Zhang CL, Wang XY, Chen WQ, Yang JS. Propagation of extensional waves in a piezoelectric semiconductor rod. AIP Adv. 2016;6(4):045301.CrossRefGoogle Scholar
  37. 37.
    Zhang CL, Wang XY, Chen WQ, Yang JS. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force. Smart Mater Struct. 2017;26(2):025030.CrossRefGoogle Scholar
  38. 38.
    Zhang CL, Luo YX, Cheng RR, Wang XY. Electromechanical fields in piezoelectric semiconductor nanofibers under an axial force. MRS Adv. 2017;2(56):3421–6.CrossRefGoogle Scholar
  39. 39.
    Gao YF, Wang ZL. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotrionics. Nano Lett. 2007;7(8):2499–505.CrossRefGoogle Scholar
  40. 40.
    Fan SQ, Liang YX, Xie JM, Hu YT. Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance: part I-Linearized analysis. Nano Energy. 2017;40:82–7.CrossRefGoogle Scholar
  41. 41.
    Chung SY, Kim S, Lee JH, Kim K, Kim SW, Kang CY, Yoon SJ, Kim YS. All-solution-processed flexible thin film piezoelectric nanogenerator. Adv Mater. 2012;24(45):6022–7.CrossRefGoogle Scholar
  42. 42.
    Pierret RF. Semiconductor device fundamentals. Massachusetts: Addison-Wesley; 1996.Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2018

Authors and Affiliations

  1. 1.Department of Engineering MechanicsZhejiang UniversityHangzhouChina
  2. 2.Department of Mechanical and Materials EngineeringUniversity of Nebraska-LincolnLincolnUSA
  3. 3.Soft Matter Research Center (SMRC)Zhejiang UniversityHangzhouChina
  4. 4.Key Laboratory of Soft Machines and Smart Devices of Zhejiang ProvinceHangzhouChina

Personalised recommendations