Simultaneous Quantification of Methionine-Related Metabolites and Co-factors in IPEC-J2 and PIEC Cells by LC–MS/MS

  • Fangrui Zuo
  • Qiongyao Gu
  • Jian Peng
  • Hongkui WeiEmail author
  • Shengqing LiEmail author


The methionine cycle is a key pathway to provide substrates for many basic biological processes including methylation and redox reactions. Here, we demonstrated a rapid and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for quantifying the metabolites and co-factors of the methionine metabolism. The analytes included methionine, S-adenosylmethionine, S-adenosylhomocysteine, 5′-deoxy-5′-(methylthio)adenosine, homocysteine, cystathionine, cysteine, glutathione, 5-methyltetrahydrofolate, vitamins B6, folic acid and vitamin B12. Linearities were obtained in all of the analytes with R2 larger than 0.99. Limits of quantification were in the range of 0.02–0.91 ng/106 cells, respectively. The recoveries of all of the analytes spiked at low, medium and high concentrations in cell lysates ranged from 74 to 117% and the accuracies ranged from 93.5 to 123.4%. The intra-day and inter-day precisions were lower than 20% of the relative standard deviations. This method was specifically designed for determining the intracellular concentrations of these analytes in the porcine small intestinal epithelial cell lines and the pig iliac artery endothelial cell lines. It enables the demonstration of changes in the concentrations of methionine intermediates when the cells are faced with deficient, moderate or excessive methionine. This method is expected to facilitate the understanding of the regulatory mechanism of nutrients on methionine metabolism.


Methionine Metabolites LC–MS/MS IPEC-J2 PIEC 



The authors greatly appreciate the State Key Laboratory of Agricultural Microbiology of Huazhong Agricultural University for the LC–MS/MS usage.


This study was supported by the Fundamental Research Funds for the Central Universities of China (no. 2662018JC009 and no. 2662017PY017); National key Research and Development project of China (no. 2017YFD0502004); China Agriculture Research System (no. CARS-36); Hubei Provincial Creative Team Project of Agricultural Science and Technology (no. 2007-620).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Supplementary material

10337_2019_3852_MOESM1_ESM.docx (287 kb)
Supplementary file1 (DOCX 286 kb)


  1. 1.
    Brosnan JT, Brosnan ME (1640S) J Nutr 136(6):1636S–1640SCrossRefGoogle Scholar
  2. 2.
    Fontecave M, Atta M, Mulliez E (2004) Trends Biochem Sci 29(5):243–249CrossRefGoogle Scholar
  3. 3.
    Andrade F, Rodríguezsoriano J, Prieto JA, Aguirre M, Ariceta G, Lage S, Azcona I, Prado C, Sanjurjo P, Aldámiz-Echevarría L (2011) Nephrol Dial Transpl 26(1):328–336CrossRefGoogle Scholar
  4. 4.
    Ragione FD, Carteni-Farina M, Gragnaniello V, Schettino MI, Zappia V (1986) J Biol Chem 261(26):12324–12329PubMedGoogle Scholar
  5. 5.
    McCarty M (2010) Med Hypoth 75(2):141–147CrossRefGoogle Scholar
  6. 6.
    Kalhan SC, Marczewski SE (2012) Rev Endocr Metab Disord 13(2):109–119CrossRefGoogle Scholar
  7. 7.
    Matthews RG, Elmore CL (2007) Clin Chem Lab Med 45(12):1700–1703CrossRefGoogle Scholar
  8. 8.
    Stoll B, Henry J, Reeds PJ, Yu H, Jahoor F, Burrin DG (1998) J Nutr 128(3):606–614CrossRefGoogle Scholar
  9. 9.
    Fang Z, Yao K, Zhang X, Zhao S, Sun Z, Tian G, Yu B, Lin Y, Zhu B, Jia G, Zhang K, Chen D, Wu D (2010) Amino Acids 39(3):633–640CrossRefGoogle Scholar
  10. 10.
    Xia M, Pan Y, Guo L, Wei XX, Xiong J, Wang L, Peng J, Wang C, Peng J, Wei HK (2019) J Anim Sci 97:3487–3497CrossRefGoogle Scholar
  11. 11.
    Longchamp A, Mirabella T, Arduini A et al (2018) Cell 173(1):117–129.e14CrossRefGoogle Scholar
  12. 12.
    Sahin M, Sahin E, Gümüşlü S, Erdoğan A, Gültekin M (2011) Biochem Biophys Res Commun 408(1):145–148CrossRefGoogle Scholar
  13. 13.
    Pan L, Yu G, Huang J, Zheng X, Xu Y (2017) Biosci Rep 37(5):BSR20170860Google Scholar
  14. 14.
    Kořínek M, Šístek V, Mládková J, Mikeš P, Jiráček J, Selicharová I (2013) Biomed Chromatogr 27(1):111–121CrossRefGoogle Scholar
  15. 15.
    Johansson M, Van Guelpen B, Vollset SE, Hultdin J, Bergh A, Key T, Midttun O, Hallmans G, Ueland PM, Stattin P (2009) Cancer Epidemiol Biomark Prev 18(5):1538–1543Google Scholar
  16. 16.
    Stevens AP, Dettmer K, Kirovski G, Samejima K, Hellerbrand C, Bosserhoff AK, Oefner PJ (2010) J Chromatogr A 1217(19):3282–3288CrossRefGoogle Scholar
  17. 17.
    Iglesias González T, Cinti M, Montes-Bayón M, Fernández de la Campa MR, Blanco-González E (2015) J Chromatogr A 1393(3):89–95Google Scholar
  18. 18.
    Borowczyk K, Chwatko G, Kubalczyk P, Jakubowski H, Kubalska J, Głowacki R (2016) Talanta 161:917–924CrossRefGoogle Scholar
  19. 19.
    Mohammadi S, Domeno C, Nerin I, Aznar M, Samper P, Khayatian G, Nerin C (2017) J Pharm Biomed Anal 145:331–338CrossRefGoogle Scholar
  20. 20.
    Glushchenko AV, Jacobsen DW (2007) Antioxid Redox Signal 9(11):1883–1898CrossRefGoogle Scholar
  21. 21.
    Sen CK, Packer L (2000) Am J Clin Nutr 72(2):653S–669SCrossRefGoogle Scholar
  22. 22.
    Persichilli S, Gervasoni J, Iavarone F, Zuppi C, Zappacosta B (2010) J Sep Sci 33(20):3119–3124CrossRefGoogle Scholar
  23. 23.
    Gardner LA, Desiderio DM, Groover CJ, Hartzes A, Yates CR, Zucker-Levin AR, Bloom L, Levin MC (2013) Electrophoresis 34(11):1710–1716CrossRefGoogle Scholar
  24. 24.
    Zhang M, Wang L, Pei P, Bao YH (2018) Anal Methods 10(11):1315–1324CrossRefGoogle Scholar
  25. 25.
    Fu XW, Xu YK, Chan P, Pattengale PK (2013) Jimd Rep 10:69–78CrossRefGoogle Scholar
  26. 26.
    Ghassabian S, Rethwan NSA, Griffiths L, Smit MT (2014) J Chromatogr B Anal Technol Biomed Life Sci 972:14–21CrossRefGoogle Scholar
  27. 27.
    Guiraud SP, Montoliu I, Silva LD, Dayon L, Galindo AN, Corthésy J, Kussmann M, Martin FP (2017) Anal Bioanal Chem 409(1):295–305CrossRefGoogle Scholar
  28. 28.
    Kovac A, Svihlova K, Michalicova A, Novak M (2014) J Chromatogr Sci 53(6):953–958CrossRefGoogle Scholar
  29. 29.
    Da Silva L, Collino S, Cominetti O, Martin FP, Montoliu I, Moreno SO, Corthesy J, Kaput J, Kussmann M, Monteiro JP (2016) Bioanalysis 8(18):1937–1949CrossRefGoogle Scholar
  30. 30.
    Jiang Y, Mistretta B, Elsea S, Sun Q (2017) Clin Chim Acta 464:93–97CrossRefGoogle Scholar
  31. 31.
    Goniewicz ML, Havel CM, Peng MW, Jacob P, Dempsey D, Yu L, Zielinska-Danch W, Koszowski B, Czogala J, Sobczak A, Benowitz NL (2009) Cancer Epidemiol Biomark Prev 18(12):3421–3425CrossRefGoogle Scholar
  32. 32.
    US Department of Health and Human Services FaDA, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM) (2011) Guidance for industry, bioanalytical method validation.Google Scholar
  33. 33.
    Oosterink JE, Naninck EF, Korosi A, Lucassen PJ, van Goudoever JB, Schierbeek H (2015) J Chromatogr B 998–999:106–113CrossRefGoogle Scholar
  34. 34.
    Zheng LF, Zuo FR, Zhao SJ, He PL, Wei HK, Xiang QH, Pang JM, Peng J (2017) Br J Nutr 117(7):911–922CrossRefGoogle Scholar
  35. 35.
    Shi B, Liu J, Sun Z, Li T, Zhu W, Tang Z (2016) J Appl Anim Res 46(1):74–80CrossRefGoogle Scholar
  36. 36.
    Song T, Lu J, Deng Z, Xu T, Yang Y, Wei H, Li S, Jiang S, Peng J (2018) Int J Obes 42:1812–1820CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Animal Nutrition and Feed Science, College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhanPeople’s Republic of China
  2. 2.The Cooperative Innovation Center for Sustainable Pig ProductionWuhanPeople’s Republic of China
  3. 3.State Key Laboratory of Agricultural Microbiology, College of ScienceHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations