Advertisement

Optimization of Electrospray Ionization for Liquid Chromatography Time-of-Flight Mass Spectrometry Analysis of Preservatives in Wood Leachate Matrix

  • Kukowski Klara
  • Gysbers Brianna
  • Stephen Fisher
  • Alena KubátováEmail author
Original

Abstract

Triazoles and 3-iodo-2-propynyl butylcarbamate (IPBC) are commonly used wood preservatives active against a wide range of fungi and bacteria. As they are prone to leaching, their amounts need to be monitored by the industry to determine preservative loss from the products and for environmental impact assessment. Therefore, a liquid chromatography–electrospray–time-of-flight mass spectrometry (LC–ESI–TOFMS) method was developed and optimized for simultaneous quantification of triazoles and IPBC in aqueous wood extracts, specifically wood leachate. Analyte pre-concentration on a solid-phase extraction cartridge prior to the analysis yielded > 94% recoveries. ESI method parameters (e.g., solvent system, electrolyte type, electrolyte concentration, capillary and fragmentor voltages) were selected based on an initial screening followed by an in-depth optimization via design of experiments. The optimal conditions employed an acetonitrile-water solvent system with 1.7 mM ammonium acetate, capillary voltage of 4350 V, and fragmentor voltage of 115 V. The developed method was applied to industrial wood leachate samples and the matrix-affected limits of detection were found to be 1.2–1.5 µg L−1 with interlay repeatability being < 7%.

Graphic Abstract

Keywords

Fungicides Electrospray ionization Wood leachate Liquid chromatography Time-of-flight mass spectrometry Design of experiments Triazoles IPBC 

Notes

Acknowledgements

Marvin Windows and Doors is acknowledged for financial support. The authors would like to thank Ben Wallace for stimulating discussions and the provided industrial wood leachate samples. The authors are also grateful to Evguenii I. Kozliak for manuscript editing.

Funding

Marvin Windows and Doors research Grant (no funding number available).

Compliance with Ethical Standards

Conflict of interest

We do not see direct conflict of interest as there is no beneficiary of the results reported. Nevertheless, this research was funded by Grant (no number available) from Marvin and Windows, Inc. to UND with PI Kubatova, co-author S. Fisher, Marvin Windows employee, Kukowski and Gysbers co-investigators.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10337_2019_3780_MOESM1_ESM.docx (142 kb)
Supplementary material 1 (DOCX 141 kb)

References

  1. 1.
    Christen V, Crettaz P, Fent K (2014) Toxicol Appl Pharmacol 279:455–466.  https://doi.org/10.1016/j.taap.2014.06.025 CrossRefGoogle Scholar
  2. 2.
    Buschhaus HU, Valcke AR (1995) Triazoles: synergism between propiconazole and tebuconazole. In: 26th Annual meeting Helsingør DenmarkGoogle Scholar
  3. 3.
    Wüstenhöfer B, Wegen HW, Metzner W (1990) International Research Group on Wood Protection. DOI Doc. No. IRG/WP/3629Google Scholar
  4. 4.
    Barnes HM (2001) Wood: preservative treated. Encyclopedia of materials: science and technology. Elsevier, Oxford, pp 9683–9688CrossRefGoogle Scholar
  5. 5.
    Schiopu N, Tiruta-Barna L (2012) Wood preservatives. Toxicity of building materials. Woodhead Publishing, Cambridge, pp 138–165CrossRefGoogle Scholar
  6. 6.
    Morrell JJ (2012) Protection of wood-based materials. Handbook of environmental degradation of materials. William Andrew Publishing, Oxford, pp 407–439CrossRefGoogle Scholar
  7. 7.
    Association AW-Ps (2006) Standard method for determination of propiconazole and tebuconazole in wood. In: Waterborne formulations and in treating solutions by HPLC, p 2Google Scholar
  8. 8.
    Kamal N, Galvez R, Buelna G (2014) Water Qual Res J Can 49:210–222.  https://doi.org/10.2166/wqrjc.2014.002 CrossRefGoogle Scholar
  9. 9.
    Kalogridi E-C, Christophoridis C, Bizani E, Drimaropoulou G, Fytianos K (2014) Environ Sci Pollut Res 21:7239–7251.  https://doi.org/10.1007/s11356-014-2793-z CrossRefGoogle Scholar
  10. 10.
    Faria AM, Maldaner L, Santana CC, Jardim ICSF, Collins CH (2007) Anal Chim Acta 582:34–40.  https://doi.org/10.1016/j.aca.2006.08.046 CrossRefGoogle Scholar
  11. 11.
    Demoliner A, Caldas SS, Costa FP, Gonçalves FF, Clementin RM, Milani MR, Primel EG (2010) J Braz Chem Soc 21:1424–1433CrossRefGoogle Scholar
  12. 12.
    Zhou Q, Xiao J, Ding Y (2007) Anal Chim Acta 602:223–228.  https://doi.org/10.1016/j.aca.2007.09.038 CrossRefGoogle Scholar
  13. 13.
    Farajzadeh M, Khoshmaram L, Afshar mogaddam M (2012) J Sep Sci 35:121–127.  https://doi.org/10.1002/jssc.201100374 CrossRefGoogle Scholar
  14. 14.
    Tuzimski T, Rejczak T, PieniĄŻEk D, Buszewicz G, TeresiŃSki G (2016) J AOAC Int 99:1436–1443.  https://doi.org/10.5740/jaoacint.16-0277 CrossRefGoogle Scholar
  15. 15.
    Liu X, Guan W, Hao X, Wu X, Ma Y, Pan C (2014) Chromatographia 77:31–37.  https://doi.org/10.1007/s10337-013-2583-7 CrossRefGoogle Scholar
  16. 16.
    Kerkdijk H, Mol HGJ, van der Nagel B (2007) Anal Chem 79:7975–7983.  https://doi.org/10.1021/ac0701536 CrossRefGoogle Scholar
  17. 17.
    Deng Z, Hu J, Qin D, Li H (2010) Chromatographia 71:679–684.  https://doi.org/10.1365/s10337-010-1505-1 CrossRefGoogle Scholar
  18. 18.
    Juan-García A, Picó Y, Font G (2005) J Chromatogr A 1073:229–236.  https://doi.org/10.1016/j.chroma.2004.09.028 CrossRefGoogle Scholar
  19. 19.
    Zhao F, She Y, Zhang C, Cao X, Wang S, Zheng L, Jin M, Shao H, Jin F, Wang J (2017) J Chromatogr B 1064:143–150.  https://doi.org/10.1016/j.jchromb.2017.08.022 CrossRefGoogle Scholar
  20. 20.
    Morris BD, Schriner RB (2015) J Agric Food Chem 63:5107–5119.  https://doi.org/10.1021/jf505539e CrossRefGoogle Scholar
  21. 21.
    Mai-ling H, Ming J, Peng W, Su-rong M, Yan-fei L, Xiao-zhong H, Yun S, Bin L, Kang D (2007) Anal Bioanal Chem 387:1007–1016.  https://doi.org/10.1007/s00216-006-1004-2 CrossRefGoogle Scholar
  22. 22.
    Schermerhorn PG, Golden PE, Krynitsky AJ, Leimkuehler WM (2005) J AOAC Int 88:1491–1502Google Scholar
  23. 23.
    Miyauchi T, Mori M, Ito K (2005) J Chromatogr A 1063:137–141.  https://doi.org/10.1016/j.chroma.2004.11.086 CrossRefGoogle Scholar
  24. 24.
    Stavova J, Sedgeman CA, Smith ZT, Frink LA, Hart JA, Niri VH, Kubatova A (2011) Anal Chim Acta 702:205–212.  https://doi.org/10.1016/j.aca.2011.06.058 CrossRefGoogle Scholar
  25. 25.
    Hansen M, Poulsen R, Luong X, Sedlak DL, Hayes T (2014) Anal Bioanal Chem 406:7677–7685.  https://doi.org/10.1007/s00216-014-8207-8 CrossRefGoogle Scholar
  26. 26.
    Wick A, Fink G, Ternes TA (2010) J Chromatogr A 1217:2088–2103.  https://doi.org/10.1016/j.chroma.2010.01.079 CrossRefGoogle Scholar
  27. 27.
    Perazzolo C, Morasch B, Kohn T, Magnet A, Thonney D, Chèvre N (2010) Environ Toxicol Chem 29:1649–1657.  https://doi.org/10.1002/etc.221 Google Scholar
  28. 28.
    Li Y, Dong F, Liu X, Xu J, Li J, Kong Z, Chen X, Zheng Y (2012) J Sep Sci 35:206–215.  https://doi.org/10.1002/jssc.201100674 CrossRefGoogle Scholar
  29. 29.
    Sennert S, Volmer D, Levsen K, Wünsch G (1995) Fresenius J Anal Chem 351:642–649.  https://doi.org/10.1007/bf00323341 CrossRefGoogle Scholar
  30. 30.
    Shoemaker JA (2016) J Chromatogr Sci 54:1532–1539.  https://doi.org/10.1093/chromsci/bmw098 CrossRefGoogle Scholar
  31. 31.
    Madureira FD, da Silva Oliveira FA, de Souza WR, Pontelo AP, de Oliveira MLG, Silva G (2012) Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29:665–678.  https://doi.org/10.1080/19440049.2011.623837 CrossRefGoogle Scholar
  32. 32.
    Van De Steene JC, Lambert WE (2008) J Chromatogr A 1182:153–160.  https://doi.org/10.1016/j.chroma.2008.01.012 CrossRefGoogle Scholar
  33. 33.
    Singer H, Jaus S, Hanke I, Lück A, Hollender J, Alder AC (2010) Environ Pollut 158:3054–3064.  https://doi.org/10.1016/j.envpol.2010.06.013 CrossRefGoogle Scholar
  34. 34.
    Pastor-Belda M, Garrido I, Campillo N, Viñas P, Hellín P, Flores P, Fenoll J (2017) Food Chem 233:69–76.  https://doi.org/10.1016/j.foodchem.2017.04.094 CrossRefGoogle Scholar
  35. 35.
    Charalampous AC, Miliadis GE, Koupparis MA (2015) Int J Environ Anal Chem 95:1283–1298.  https://doi.org/10.1080/03067319.2015.1100723 CrossRefGoogle Scholar
  36. 36.
    Ye C-l, Liu Q-l, Wang Z-k, Fan J (2012) Int J Environ Anal Chem 92:1176–1186.  https://doi.org/10.1080/03067319.2010.523465 CrossRefGoogle Scholar
  37. 37.
    Wang W, Ma X, Wu Q, Wang C, Zang X, Wang Z (2012) J Sep Sci 35:2266–2272.  https://doi.org/10.1002/jssc.201200285 CrossRefGoogle Scholar
  38. 38.
    Gao Y, Zhou Q, Xie G, Yao Z (2012) J Sep Sci 35:3569–3574.  https://doi.org/10.1002/jssc.201200553 CrossRefGoogle Scholar
  39. 39.
    Rousova J, Kusler K, Liyanage D, Leadbetter M, Dongari N, Zhang KK, Novikov A, Sauter ER, Kubátová A (2016) J Chromatogr B 1039:35–43.  https://doi.org/10.1016/j.jchromb.2016.10.028 CrossRefGoogle Scholar
  40. 40.
    Robles-Molina J, Lara-Ortega FJ, Gilbert-López B, García-Reyes JF, Molina-Díaz A (2014) J Chromatogr A 1350:30–43.  https://doi.org/10.1016/j.chroma.2014.05.003 CrossRefGoogle Scholar
  41. 41.
    Amelin V, Andoralov A (2016) J Anal Chem 71:82–93.  https://doi.org/10.1134/S1061934815120035 CrossRefGoogle Scholar
  42. 42.
    Kukowski K, Martinská V, Sedgeman CA, Kuplic P, Kozliak EI, Fisher S, Kubátová A (2017) Chemosphere 184:261–268.  https://doi.org/10.1016/j.chemosphere.2017.05.168 CrossRefGoogle Scholar
  43. 43.
    Dongari N, Sauter ER, Tande BM, Kubátová A (2014) J Chromatogr B 955–956:86–92.  https://doi.org/10.1016/j.jchromb.2014.02.012 CrossRefGoogle Scholar
  44. 44.
    Müller A, Flottmann D, Schulz W, Seitz W, Weber WH (2007) CLEAN Soil Air Water 35:329–338.  https://doi.org/10.1002/clen.200700014 CrossRefGoogle Scholar
  45. 45.
    Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Talanta 76:965–977.  https://doi.org/10.1016/j.talanta.2008.05.019 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of North DakotaGrand ForksUSA
  2. 2.Marvin Windows and DoorsWarroadUSA
  3. 3.Hewlett-Packard Inc.San DiegoUSA
  4. 4.Division of Gastroenterology and HepatologyMayo ClinicRochesterUSA

Personalised recommendations