Advertisement

The Benefits of Ultra-High-Performance Supercritical Fluid Chromatography in Determination of Lipophilic Vitamins in Dietary Supplements

  • Lucie Nováková
  • Magdaléna Sejkorová
  • Kateřina Smolková
  • Kateřina Plachká
  • František Švec
Original
  • 16 Downloads
Part of the following topical collections:
  1. Rising Stars in Separation Science

Abstract

Nine tocopherol derivatives including four tocopherols, four tocotrienols, and one esterified form of α-tocopherol acetate were analyzed using ultra-high-performance supercritical fluid chromatography (UHPSFC) with diode array detection. The separation was carried out on BEH 2-EP column using shallow gradient elution of 1–4% methanol and CO2 in 5 min. Complementary ultra-high-performance liquid chromatography method was developed using Ascentis Express F5 core–shell stationary phase and isocratic elution with 75% acetonitrile/methanol (1:1) and 25% water. This separation took 12 min that is the shortest liquid chromatography run in analysis of all tocopherol derivatives reported so far. However, our UHPSFC method resulted in more than two times faster analysis, and allowed direct injection of heptane solutions and extracts from liquid–liquid extraction. These features made UHPSFC a method of choice for subsequent analysis of dietary supplements containing different forms of vitamin E. Sample preparation methods were optimized for individual dosage forms of drops, capsules, tablets, and granulate.

Keywords

Ultra-high-performance supercritical fluid chromatography Ultra-high-performance liquid chromatography Liquid–liquid extraction Vitamin E Dietary supplements Method validation 

Notes

Acknowledgements

The authors gratefully acknowledge the Grant project SVV no. 260412/2018 and the project EFSA-CDN (no. CZ.02.1.01/0.0/0.0/16_019/0000841) co-funded by ERDF.

Funding

Kateřina Plachká acknowledges funding of the Grant project SVV no. 260412/2017. Lucie Nováková and František Švec acknowledge the funding of the project EFSA-CDN (no. CZ.02.1.01/0.0/0.0/16_019/0000841) co-funded by ERDF.

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Azzi A (2018) Many tocopherols, one vitamin E. Mol Asp Med 61:92–103.  https://doi.org/10.1016/j.mam.2017.06.004 CrossRefGoogle Scholar
  2. 2.
    San Andrés MP, Otero J, Vera S (2011) High performance liquid chromatography method for the simultaneous determination of α-, γ- and δ-tocopherol in vegetable oils in presence of hexadecyltrimethylammonium bromide/n-propanol in mobile phase. Food Chem 126(3):1470–1474.  https://doi.org/10.1016/j.foodchem.2010.11.161 CrossRefGoogle Scholar
  3. 3.
    Zingg J-M (2007) Vitamin E: an overview of major research directions. Mol Asp Med 28(5):400–422.  https://doi.org/10.1016/j.mam.2007.05.004 CrossRefGoogle Scholar
  4. 4.
    Fanali C, D’Orazio G, Fanali S, Gentili A (2017) Advanced analytical techniques for fat-soluble vitamin analysis. TrAC Trends Anal Chem 87:82–97.  https://doi.org/10.1016/j.trac.2016.12.001 CrossRefGoogle Scholar
  5. 5.
    Oberson JM, Campos-Gimenez E, Riviere J, Martin F (2018) Application of supercritical fluid chromatography coupled to mass spectrometry to the determination of fat-soluble vitamins in selected food products. J Chromatogr B Anal Technol Biomed Life Sci 1086:118–129.  https://doi.org/10.1016/j.jchromb.2018.04.017 CrossRefGoogle Scholar
  6. 6.
    Wang X, Quinn PJ (1999) Vitamin E and its function in membranes. Prog Lipid Res 38(4):309–336.  https://doi.org/10.1016/S0163-7827(99)00008-9 CrossRefPubMedGoogle Scholar
  7. 7.
    Rigotti A (2007) Absorption, transport, and tissue delivery of vitamin E. Mol Asp Med 28(5):423–436.  https://doi.org/10.1016/j.mam.2007.01.002 CrossRefGoogle Scholar
  8. 8.
    Traber MG (2014) Vitamin E inadequacy in humans: causes and consequences. Adv Nutr 5(5):503–514.  https://doi.org/10.3945/an.114.006254 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sieniawska E, Baj T, Sawicki R, Wanat A, Wojtanowski KK, Ginalska G, Zgorka G, Szymanska J (2017) LC–QTOF–MS analysis and activity profiles of popular antioxidant dietary supplements in terms of quality control. Oxid Med Cell Longev 2017:8692516.  https://doi.org/10.1155/2017/8692516 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Phillips MM, Rimmer CA, Wood LJ, Lippa KA, Sharpless KE, Duewer DL, Sander LC, Betz JM (2011) Dietary supplement laboratory quality assurance program: the first five exercises. J AOAC Int 94(3):803–814PubMedPubMedCentralGoogle Scholar
  11. 11.
    Sarma N, Giancaspro G, Venema J (2016) Dietary supplements quality analysis tools from the United States Pharmacopeia. Drug Test Anal 8(3–4):418–423.  https://doi.org/10.1002/dta.1940 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Young AL, Woodlee JW, McGuffin MM (2018) Chap. 9—dietary supplements. In: Pacifici E, Bain S (eds) An overview of FDA regulated products. Academic Press, New York, pp 199–215.  https://doi.org/10.1016/B978-0-12-811155-0.00009-0 CrossRefGoogle Scholar
  13. 13.
    Rupérez FJ, Martín D, Herrera E, Barbas C (2001) Chromatographic analysis of α-tocopherol and related compounds in various matrices. J Chromatogr A 935(1):45–69.  https://doi.org/10.1016/S0021-9673(01)01101-3 CrossRefPubMedGoogle Scholar
  14. 14.
    Chase GW Jr, Eitenmiller RR, Long AR (1999) Analysis of all-rac-alpha-tocopheryl acetate and retinyl palmitate in medical foods using a zero control reference material (ZRM) as a method development tool. J AOAC Int 82(2):271–275PubMedGoogle Scholar
  15. 15.
    Chase GW Jr, Eitenmiller RR, Long AR (1999) A liquid chromatographic method for analysis of all-rac-alpha-tocopheryl acetate and retinyl palmitate in medical food using matrix solid-phase dispersion in conjunction with a zero reference material as a method development tool. J AOAC Int 82(1):107–111PubMedGoogle Scholar
  16. 16.
    Vigo J, Lucero MJ, Leon MJ (1992) Determination of alpha-tocopherol in semisolid gelled preparations by reversed phase HPLC. Bollettino Chimico Farmaceutico 131(11):415–418PubMedGoogle Scholar
  17. 17.
    Temova Rakuša Ž, Srečnik E, Roškar R (2017) Novel HPLC-UV method for simultaneous determination of fat-soluble vitamins and coenzyme Q10 in medicines and supplements. Acta Chim Slov.  https://doi.org/10.17344/acsi.2016.2856 CrossRefPubMedGoogle Scholar
  18. 18.
    Sun J (1999) Liquid chromatographic determination of carotenoids and vitamins A and E in multivitamin tablets. J AOAC Int 82(1):68–72PubMedGoogle Scholar
  19. 19.
    Scalia S, Ruberto G, Bonina F (1995) Determination of vitamin A, vitamin E, and their esters in tablet preparations using supercritical fluid extraction and HPLC. J Pharm Sci 84(4):433–436CrossRefGoogle Scholar
  20. 20.
    Labadie MP, Boufford CE (1988) Gas chromatographic assay of supplemental vitamin E acetate concentrates: collaborative study. J Assoc Off Anal Chem 71(6):1168–1171PubMedGoogle Scholar
  21. 21.
    Zhao J, Yang G, Duan H, Li J (2001) Determination of synthesized alpha-vitamin E by micellar electrokinetic chromatography. Electrophoresis 22 (1):151–154.  https://doi.org/10.1002/1522-2683(200101)22:1%3C151::Aid-elps151%3E3.0.Co;2-0 CrossRefPubMedGoogle Scholar
  22. 22.
    Grebenstein N, Frank J (2012) Rapid baseline-separation of all eight tocopherols and tocotrienols by reversed-phase liquid-chromatography with a solid-core pentafluorophenyl column and their sensitive quantification in plasma and liver. J Chromatogr A 1243:39–46.  https://doi.org/10.1016/j.chroma.2012.04.042 CrossRefPubMedGoogle Scholar
  23. 23.
    Pilařová V, Gottvald T, Svoboda P, Novák O, Benešová K, Běláková S, Nováková L (2016) Development and optimization of ultra-high performance supercritical fluid chromatography mass spectrometry method for high-throughput determination of tocopherols and tocotrienols in human serum. Anal Chim Acta 934:252–265.  https://doi.org/10.1016/j.aca.2016.06.008 CrossRefPubMedGoogle Scholar
  24. 24.
    Qi N, Gong X, Feng C, Wang X, Xu Y, Lin L (2016) Simultaneous analysis of eight vitamin E isomers in Moringa oleifera Lam. leaves by ultra performance convergence chromatography. Food Chem 207:157–161.  https://doi.org/10.1016/j.foodchem.2016.03.089 CrossRefPubMedGoogle Scholar
  25. 25.
    Gee PT, Liew CY, Thong MC, Gay MCL (2016) Vitamin E analysis by ultra-performance convergence chromatography and structural elucidation of novel α-tocodienol by high-resolution mass spectrometry. Food Chem 196:367–373.  https://doi.org/10.1016/j.foodchem.2015.09.073 CrossRefPubMedGoogle Scholar
  26. 26.
    Mejean M, Brunelle A, Touboul D (2015) Quantification of tocopherols and tocotrienols in soybean oil by supercritical-fluid chromatography coupled to high-resolution mass spectrometry. Anal Bioanal Chem 407(17):5133–5142.  https://doi.org/10.1007/s00216-015-8604-7 CrossRefPubMedGoogle Scholar
  27. 27.
    Petruzziello F, Grand-Guillaume Perrenoud A, Thorimbert A, Fogwill M, Rezzi S (2017) Quantitative profiling of endogenous fat-soluble vitamins and carotenoids in human plasma using an improved UHPSFC–ESI-MS interface. Anal Chem 89(14):7615–7622.  https://doi.org/10.1021/acs.analchem.7b01476 CrossRefPubMedGoogle Scholar
  28. 28.
    ICH-Expert-Working-Group (1994) ICH harmonised tripartite guideline: validation of analytical procedures: text and methodology. https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf. Accessed Aug 2018

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lucie Nováková
    • 1
  • Magdaléna Sejkorová
    • 2
  • Kateřina Smolková
    • 2
  • Kateřina Plachká
    • 1
  • František Švec
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of PharmacyCharles UniversityHradec KrálovéCzech Republic
  2. 2.Biskupské gymnáziumŽďár nad SázavouCzech Republic

Personalised recommendations