Immobilization of Metal–Organic Frameworks on Supports for Sample Preparation and Chromatographic Separation

  • Fernando Maya
  • Carlos Palomino Cabello
  • Andreu Figuerola
  • Gemma Turnes Palomino
  • Víctor Cerdà
Part of the following topical collections:
  1. Rising Stars in Separation Science


Metal–organic frameworks (MOFs) are porous crystalline materials with large surface areas, uniform pore size, and tunable selectivity. In the last few years, the number of analytical applications of MOFs has been growing constantly. However, the direct use of as-synthesized MOFs in packed column format is rather limited for analytical separations because of the small size and non-spherical shape of MOF crystals. In this review, we outline and critically discuss the advantages and limitations of the different methods described to immobilize MOFs into functional supports for analytical separations, including beads, monoliths, and fibers. These methods are based on embedding MOF crystals into functional supports, in situ MOF growth, controlled layer-by-layer MOF growth, or the in situ conversion of immobilized MOF metal oxide precursors. Representative examples of immobilized MOFs for sample preparation and chromatographic separation are overviewed. We also overview recent progress on the use of MOFs as precursors to obtain other functional materials such as layered double hydroxides or porous carbons.


Metal–organic frameworks Solid-phase extraction Sample preparation Chromatography Electrophoresis 



The Spanish Ministerio de Economía y Competitividad (MINECO) and the European Funds for Regional Development (FEDER) are gratefully acknowledged for financial support through Project CTQ2016–77155-R. A.F. thanks the Spanish Servicio Público de Empleo Estatal and European Social Funds for financial support through Program SOIB Jove-Qualificats Sector Públic.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402:276–279CrossRefGoogle Scholar
  2. 2.
    Park KS, Ni Z, Côté AP et al (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci 103:10186–10191. CrossRefPubMedGoogle Scholar
  3. 3.
    Moghadam PZ, Li A, Wiggin SB et al (2017) Development of a Cambridge Structural Database subset: a collection of metal–organic frameworks for past, present, and future. Chem Mater 29:2618–2625. CrossRefGoogle Scholar
  4. 4.
    Li J-R, Kuppler RJ, Zhou H-C (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477–1504. CrossRefPubMedGoogle Scholar
  5. 5.
    Lee J, Farha OK, Roberts J et al (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38:1450–1459. CrossRefPubMedGoogle Scholar
  6. 6.
    Gu Z-Y, Yang C-X, Chang N, Yan X-P (2012) Metal–organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res 45:734–745. CrossRefPubMedGoogle Scholar
  7. 7.
    Rocío-Bautista P, Pacheco-Fernández I, Pasán J, Pino V (2016) Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings?—a review. Anal Chim Acta 939:26–41. CrossRefPubMedGoogle Scholar
  8. 8.
    Rocío-Bautista P, González-Hernández P, Pino V et al (2017) Metal-organic frameworks as novel sorbents in dispersive-based microextraction approaches. TrAC Trends Anal Chem 90:114–134. CrossRefGoogle Scholar
  9. 9.
    Hashemi B, Zohrabi P, Raza N, Kim K-H (2017) Metal–organic frameworks as advanced sorbents for the extraction and determination of pollutants from environmental, biological, and food media. TrAC Trends Anal Chem 97:65–82. CrossRefGoogle Scholar
  10. 10.
    Wang Y, Rui M, Lu G (2018) Recent applications of metal–organic frameworks in sample pretreatment. J Sep Sci 41:180–194. CrossRefPubMedGoogle Scholar
  11. 11.
    Liu C, Yu L-Q, Zhao Y-T, Lv Y-K (2018) Recent advances in metal-organic frameworks for adsorption of common aromatic pollutants. Microchim Acta 185:342. CrossRefGoogle Scholar
  12. 12.
    Yusuf K, Aqel A, AL Othman Z (2014) Metal-organic frameworks in chromatography. J Chromatogr A 1348:1–16. CrossRefPubMedGoogle Scholar
  13. 13.
    Duerinck T, Denayer JFM (2015) Metal–organic frameworks as stationary phases for chiral chromatographic and membrane separations. Chem Eng Sci 124:179–187. CrossRefGoogle Scholar
  14. 14.
    Zhang J, Chen Z (2017) Metal–organic frameworks as stationary phase for application in chromatographic separation. J Chromatogr A 1530:1–18. CrossRefPubMedGoogle Scholar
  15. 15.
    Wang X, Ye N (2017) Recent advances in metal-organic frameworks and covalent organic frameworks for sample preparation and chromatographic analysis. Electrophoresis 38:3059–3078. CrossRefPubMedGoogle Scholar
  16. 16.
    Li XC, Sha SL (2016) Application of metal-organic frameworks in chromatographic separation. Acta Chim Sin 74:969–979CrossRefGoogle Scholar
  17. 17.
    Kreno LE, Leong K, Farha OK et al (2012) Metal–organic framework materials as chemical sensors. Chem Rev 112:1105–1125. CrossRefPubMedGoogle Scholar
  18. 18.
    Bae T-H, Lee JS, Qiu W et al (2010) A high-performance gas-separation membrane containing submicrometer-sized metal–organic framework crystals. Angew Chem Int Ed 49:9863–9866. CrossRefGoogle Scholar
  19. 19.
    Rodenas T, Luz I, Prieto G et al (2014) Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat Mater 14:48CrossRefGoogle Scholar
  20. 20.
    Sachse A, Ameloot R, Coq B et al (2012) In situ synthesis of Cu-BTC (HKUST-1) in macro-/mesoporous silica monoliths for continuous flow catalysis. Chem Commun 48:4749–4751. CrossRefGoogle Scholar
  21. 21.
    Sorribas S, Zornoza B, Tellez C, Coronas J (2012) Ordered mesoporous silica-(ZIF-8) core-shell spheres. Chem Commun 48:9388–9390. CrossRefGoogle Scholar
  22. 22.
    Hayes R, Ahmed A, Edge T, Zhang H (2014) Core–shell particles: preparation, fundamentals and applications in high performance liquid chromatography. J Chromatogr A 1357:36–52. CrossRefPubMedGoogle Scholar
  23. 23.
    Lv Y, Tan X, Svec F (2017) Preparation and applications of monolithic structures containing metal-organic frameworks. J Sep Sci 40:272–287. CrossRefPubMedGoogle Scholar
  24. 24.
    Shekhah O, Wang H, Kowarik S et al (2007) Step-by-step route for the synthesis of metal–organic frameworks. J Am Chem Soc 129:15118–15119. CrossRefPubMedGoogle Scholar
  25. 25.
    Shekhah O, Liu J, Fischer RA, Woll C (2011) MOF thin films: existing and future applications. Chem Soc Rev 40:1081–1106. CrossRefPubMedGoogle Scholar
  26. 26.
    Yue Y, Qiao Z-A, Li X et al (2013) Nanostructured zeolitic imidazolate frameworks derived from nanosized zinc oxide precursors. Cryst Growth Des 13:1002–1005. CrossRefGoogle Scholar
  27. 27.
    Zhan W, Kuang Q, Zhou J et al (2013) Semiconductor@metal–organic framework core–shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J Am Chem Soc 135:1926–1933. CrossRefPubMedGoogle Scholar
  28. 28.
    Chen B, Liang C, Yang J et al (2006) A microporous metal–organic framework for gas-chromatographic separation of alkanes. Angew Chem Int Ed 118:1418–1421. CrossRefGoogle Scholar
  29. 29.
    Gu Z-Y, Yan X-P (2010) Metal–organic framework MIL-101 for high-resolution gas-chromatographic separation of xylene isomers and ethylbenzene. Angew Chem Int Ed 49:1477–1480. CrossRefGoogle Scholar
  30. 30.
    Zhou Y-Y, Yan X-P, Kim K-N et al (2006) Exploration of coordination polymer as sorbent for flow injection solid-phase extraction on-line coupled with high-performance liquid chromatography for determination of polycyclic aromatic hydrocarbons in environmental materials. J Chromatogr A 1116:172–178. CrossRefPubMedGoogle Scholar
  31. 31.
    Alaerts L, Kirschhock CEA, Maes M et al (2007) Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47. Angew Chem Int Ed 46:4293–4297. CrossRefGoogle Scholar
  32. 32.
    Yang C-X, Yan X-P (2011) Metal–organic framework MIL-101(Cr) for high-performance liquid chromatographic separation of substituted aromatics. Anal Chem 83:7144–7150. CrossRefPubMedGoogle Scholar
  33. 33.
    Maya F, Cabello CP, Estela JM et al (2015) Automatic in-syringe dispersive microsolid phase extraction using magnetic metal-organic frameworks. Anal Chem 87:7545–7549. CrossRefPubMedGoogle Scholar
  34. 34.
    Maya F, Palomino Cabello C, Frizzarin RM et al (2017) Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons. TrAC Trends Anal Chem 90:142–152. CrossRefGoogle Scholar
  35. 35.
    Huang H-Y, Lin C-L, Wu C-Y et al (2013) Metal organic framework–organic polymer monolith stationary phases for capillary electrochromatography and nano-liquid chromatography. Anal Chim Acta 779:96–103. CrossRefPubMedGoogle Scholar
  36. 36.
    Fu Y-Y, Yang C-X, Yan X-P (2013) Incorporation of metal-organic framework UiO-66 into porous polymer monoliths to enhance the liquid chromatographic separation of small molecules. Chem Commun 49:7162–7164. CrossRefGoogle Scholar
  37. 37.
    Li L-M, Yang F, Wang H-F, Yan X-P (2013) Metal-organic framework polymethyl methacrylate composites for open-tubular capillary electrochromatography. J Chromatogr A 1316:97–103. CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang L-S, Du P-Y, Gu W et al (2016) Monolithic column incorporated with lanthanide metal-organic framework for capillary electrochromatography. J Chromatogr A 1461:171–178. CrossRefPubMedGoogle Scholar
  39. 39.
    Yusuf K, Badjah-Hadj-Ahmed AY, Aqel A, ALOthman ZA (2016) Monolithic metal–organic framework MIL-53(Al)-polymethacrylate composite column for the reversed-phase capillary liquid chromatography separation of small aromatics. J Sep Sci 39:880–888. CrossRefPubMedGoogle Scholar
  40. 40.
    Yang S, Ye F, Lv Q et al (2014) Incorporation of metal-organic framework HKUST-1 into porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules. J Chromatogr A 1360:143–149. CrossRefPubMedGoogle Scholar
  41. 41.
    Wang X, Lamprou A, Svec F et al (2016) Polymer-based monolithic column with incorporated chiral metal-organic framework for enantioseparation of methyl phenyl sulfoxide using nano-liquid chromatography. J Sep Sci 39:4544–4548. CrossRefPubMedGoogle Scholar
  42. 42.
    Lin C-L, Lirio S, Chen Y-T et al (2014) A novel hybrid metal-organic framework-polymeric monolith for solid-phase microextraction. Chem Eur J 20:3317–3321. CrossRefPubMedGoogle Scholar
  43. 43.
    Lyu D-Y, Yang C-X, Yan X-P (2015) Fabrication of aluminum terephthalate metal-organic framework incorporated polymer monolith for the microextraction of non-steroidal anti-inflammatory drugs in water and urine samples. J Chromatogr A 1393:1–7. CrossRefPubMedGoogle Scholar
  44. 44.
    Lirio S, Liu W-L, Lin C-L et al (2016) Aluminum based metal–organic framework-polymer monolith in solid-phase microextraction of penicillins in river water and milk samples. J Chromatogr A 1428:236–245. CrossRefPubMedGoogle Scholar
  45. 45.
    Shih Y-H, Kuo Y-C, Lirio S et al (2017) A simple approach to enhance the water stability of a metal–organic framework. Chem Eur J 23:42–46. CrossRefPubMedGoogle Scholar
  46. 46.
    Chen X-F, Zang H, Wang X et al (2012) Metal–organic framework MIL-53(Al) as a solid-phase microextraction adsorbent for the determination of 16 polycyclic aromatic hydrocarbons in water samples by gas chromatography-tandem mass spectrometry. Analyst 137:5411–5419. CrossRefPubMedGoogle Scholar
  47. 47.
    Shang H-B, Yang C-X, Yan X-P (2014) Metal–organic framework UiO-66 coated stainless steel fiber for solid-phase microextraction of phenols in water samples. J Chromatogr A 1357:165–171. CrossRefPubMedGoogle Scholar
  48. 48.
    Yu L-Q, Wang L-Y, Su F-H et al (2018) A gate-opening controlled metal–organic framework for selective solid-phase microextraction of aldehydes from exhaled breath of lung cancer patients. Microchim Acta 185:307. CrossRefGoogle Scholar
  49. 49.
    Denny MS, Cohen SM (2015) In situ modification of metal–organic frameworks in mixed-matrix membranes. Angew Chem Int Ed 54:9029–9032. CrossRefGoogle Scholar
  50. 50.
    Ghani M, Font Picó MF, Salehinia S et al (2017) Metal–organic framework mixed-matrix disks: versatile supports for automated solid-phase extraction prior to chromatographic separation. J Chromatogr A 1488:1–9. CrossRefPubMedGoogle Scholar
  51. 51.
    Li L, Xiang S, Cao S et al (2013) A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal–organic aerogels. Nat Commun 4:1774CrossRefGoogle Scholar
  52. 52.
    Hu Y, Fan Y, Huang Z et al (2012) In situ fabrication of metal–organic hybrid gels in a capillary for online enrichment of trace analytes in aqueous samples. Chem Commun 48:3966–3968. CrossRefGoogle Scholar
  53. 53.
    Ameloot R, Liekens A, Alaerts L et al (2010) Silica–MOF composites as a stationary phase in liquid chromatography. Eur J Inorg Chem 2010:3735–3738. CrossRefGoogle Scholar
  54. 54.
    Qu Q, Si Y, Xuan H et al (2017) A nanocrystalline metal organic framework confined in the fibrous pores of core-shell silica particles for improved HPLC separation. Microchim Acta 184:4099–4106. CrossRefGoogle Scholar
  55. 55.
    Qu Q, Xuan H, Zhang K et al (2017) Core-shell silica particles with dendritic pore channels impregnated with zeolite imidazolate framework-8 for high performance liquid chromatography separation. J Chromatogr A 1505:63–68. CrossRefPubMedGoogle Scholar
  56. 56.
    Ahmed A, Forster M, Clowes R et al (2013) Silica SOS@HKUST-1 composite microspheres as easily packed stationary phases for fast separation. J Mater Chem A 1:3276–3286. CrossRefGoogle Scholar
  57. 57.
    Yan Z, Zheng J, Chen J et al (2014) Preparation and evaluation of silica-UIO-66 composite as liquid chromatographic stationary phase for fast and efficient separation. J Chromatogr A 1366:45–53. CrossRefPubMedGoogle Scholar
  58. 58.
    Ehrling S, Kutzscher C, Freund P et al (2018) MOF@SiO2 core-shell composites as stationary phase in high performance liquid chromatography. Microporous Mesoporous Mater 263:268–274. CrossRefGoogle Scholar
  59. 59.
    Peristyy A, Nesterenko PN, Das A et al (2016) Flow-dependent separation selectivity for organic molecules on metal–organic frameworks containing adsorbents. Chem Commun 52:5301–5304. CrossRefGoogle Scholar
  60. 60.
    Arrua RD, Peristyy A, Nesterenko PN et al (2017) UiO-66@SiO2 core-shell microparticles as stationary phases for the separation of small organic molecules. Analyst 142:517–524. CrossRefPubMedGoogle Scholar
  61. 61.
    Li Y, Bao T, Chen Z (2017) Polydopamine-assisted immobilization of zeolitic imidazolate framework-8 for open-tubular capillary electrochromatography. J Sep Sci 40:954–961. CrossRefPubMedGoogle Scholar
  62. 62.
    Cui X-Y, Gu Z-Y, Jiang D-Q et al (2009) In situ hydrothermal growth of metal–organic framework 199 films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues. Anal Chem 81:9771–9777. CrossRefPubMedGoogle Scholar
  63. 63.
    Wu Y-Y, Yang C-X, Yan X-P (2014) Fabrication of metal–organic framework MIL-88B films on stainless steel fibers for solid-phase microextraction of polychlorinated biphenyls. J Chromatogr A 1334:1–8. CrossRefPubMedGoogle Scholar
  64. 64.
    Yu L-Q, Yan X-P (2013) Covalent bonding of zeolitic imidazolate framework-90 to functionalized silica fibers for solid-phase microextraction. Chem Commun 49:2142–2144. CrossRefGoogle Scholar
  65. 65.
    Li Q-L, Wang X, Chen X-F et al (2015) In situ hydrothermal growth of ytterbium-based metal–organic framework on stainless steel wire for solid-phase microextraction of polycyclic aromatic hydrocarbons from environmental samples. J Chromatogr A 1415:11–19. CrossRefPubMedGoogle Scholar
  66. 66.
    Shekhah O, Fu L, Sougrat R et al (2012) Successful implementation of the stepwise layer-by-layer growth of MOF thin films on confined surfaces: mesoporous silica foam as a first case study. Chem Commun 48:11434–11436. CrossRefGoogle Scholar
  67. 67.
    Saeed A, Maya F, Xiao DJ et al (2014) Growth of a highly porous coordination polymer on a macroporous polymer monolith support for enhanced immobilized metal ion affinity chromatographic enrichment of phosphopeptides. Adv Funct Mater 24:5790–5797. CrossRefGoogle Scholar
  68. 68.
    Maya F, Palomino Cabello C, Clavijo S et al (2015) Automated growth of metal–organic framework coatings on flow-through functional supports. Chem Commun 51:8169–8172. CrossRefGoogle Scholar
  69. 69.
    Lamprou A, Wang H, Saeed A, Svec F, Britt D, Maya F (2015) Preparation of highly porous coordination polymer coatings on macroporous polymer monoliths for enhanced enrichment of phosphopeptides. J Vis Exp e52926–e52926.
  70. 70.
    Zhichao X, Yongsheng J, Fang C et al (2014) Facile preparation of core–shell magnetic metal–organic framework nanospheres for the selective enrichment of endogenous peptides. Chem Eur J 20:7389–7395. CrossRefGoogle Scholar
  71. 71.
    Chen Y, Xiong Z, Peng L et al (2015) Facile preparation of core–shell magnetic metal–organic framework nanoparticles for the selective capture of phosphopeptides. ACS Appl Mater Interfaces 7:16338–16347. CrossRefPubMedGoogle Scholar
  72. 72.
    Qin W, Silvestre ME, Li Y, Franzreb M (2016) High performance liquid chromatography of substituted aromatics with the metal-organic framework MIL-100(Fe): mechanism analysis and model-based prediction. J Chromatogr A 1432:84–91. CrossRefPubMedGoogle Scholar
  73. 73.
    Yang S, Ye F, Zhang C et al (2015) In situ synthesis of metal–organic frameworks in a porous polymer monolith as the stationary phase for capillary liquid chromatography. Analyst 140:2755–2761. CrossRefPubMedGoogle Scholar
  74. 74.
    Li X, Wang X, Ma W et al (2017) Fast analysis of glycosides based on HKUST-1-coated monolith solid-phase microextraction and direct analysis in real time mass spectrometry. J Sep Sci 40:1589–1596. CrossRefPubMedGoogle Scholar
  75. 75.
    Bao T, Zhang J, Zhang W, Chen Z (2015) Growth of metal–organic framework HKUST-1 in capillary using liquid-phase epitaxy for open-tubular capillary electrochromatography and capillary liquid chromatography. J Chromatogr A 1381:239–246. CrossRefPubMedGoogle Scholar
  76. 76.
    Xu Y, Lv W, Ren C et al (2018) In situ preparation of multilayer coated capillary column with HKUST-1 for separation of neutral small organic molecules by open tubular capillary electrochromatography. J Chromatogr A 1532:223–231. CrossRefPubMedGoogle Scholar
  77. 77.
    Bao T, Tang P, Mao Z, Chen Z (2016) An immobilized carboxyl containing metal-organic framework-5 stationary phase for open-tubular capillary electrochromatography. Talanta 154:360–366. CrossRefPubMedGoogle Scholar
  78. 78.
    Pan C, Wang W, Zhang H et al (2015) In situ synthesis of homochiral metal–organic framework in capillary column for capillary electrochromatography enantioseparation. J Chromatogr A 1388:207–216. CrossRefPubMedGoogle Scholar
  79. 79.
    del Rio M, Palomino Cabello C, Gonzalez V et al (2016) Metal oxide assisted preparation of core–shell beads with dense metal–organic framework coatings for the enhanced extraction of organic pollutants. Chem A Eur J 22:11770–11777. CrossRefGoogle Scholar
  80. 80.
    Darder M, del M, Salehinia, Parra S JB, et al (2017) Nanoparticle-directed metal–organic framework/porous organic polymer monolithic supports for flow-based applications. ACS Appl Mater Interfaces 9:1728–1736. CrossRefPubMedGoogle Scholar
  81. 81.
    Ghani M, Masoum S, Ghoreishi SM et al (2018) Nanoparticle-templated hierarchically porous polymer/zeolitic imidazolate framework as a solid-phase microextraction coatings. J Chromatogr A 1567:55–63. CrossRefPubMedGoogle Scholar
  82. 82.
    Pan C, Wang W, Chen X (2016) In situ rapid preparation of homochiral metal-organic framework coated column for open tubular capillary electrochromatography. J Chromatogr A 1427:125–133. CrossRefPubMedGoogle Scholar
  83. 83.
    Torad NL, Hu M, Ishihara S et al (2014) Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. Small 10:2096–2107. CrossRefPubMedGoogle Scholar
  84. 84.
    Hao L, Wang C, Wu Q et al (2014) Metal–organic framework derived magnetic nanoporous carbon: novel adsorbent for magnetic solid-phase extraction. Anal Chem 86:12199–12205. CrossRefPubMedGoogle Scholar
  85. 85.
    González A, Avivar J, Maya F et al (2017) In-syringe dispersive µ-SPE of estrogens using magnetic carbon microparticles obtained from zeolitic imidazolate frameworks. Anal Bioanal Chem 409:225–234. CrossRefGoogle Scholar
  86. 86.
    Carrasco-Correa EJ, Martínez-Vilata A, Herrero-Martínez JM et al (2017) Incorporation of zeolitic imidazolate framework (ZIF-8)-derived nanoporous carbons in methacrylate polymeric monoliths for capillary electrochromatography. Talanta 164:348–354. CrossRefPubMedGoogle Scholar
  87. 87.
    Ghani M, Frizzarin RM, Maya F, Cerdà V (2016) In-syringe extraction using dissolvable layered double hydroxide-polymer sponges templated from hierarchically porous coordination polymers. J Chromatogr A 1453:1–9. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fernando Maya
    • 1
    • 2
  • Carlos Palomino Cabello
    • 2
  • Andreu Figuerola
    • 2
  • Gemma Turnes Palomino
    • 2
  • Víctor Cerdà
    • 2
  1. 1.Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences–ChemistryUniversity of TasmaniaHobartAustralia
  2. 2.University of the Balearic IslandsPalmaSpain

Personalised recommendations