Advertisement

Chromatographia

, Volume 80, Issue 3, pp 383–400 | Cite as

Analysis of Two-Component Non-Equilibrium Model of Linear Reactive Chromatography

  • Shamsul QamarEmail author
  • Sameena Bibi
  • Noreen Akram
  • Andreas Seidel-Morgenstern
Original

Abstract

This article presents semi-analytical solutions and analytical temporal moments of a two-component linear reactive lumped kinetic model incorporating irreversible (\(A\rightarrow B\)) and reversible (\(A\leftrightarrows B\)) reactions in a fixed-bed liquid chromatographic column. Both solid and liquid phase reactions and two sets of boundary conditions are considered. The current model equations contain a coupled system of two partial differential equations (PDEs) and two ordinary differential equations (ODEs). The solution methodology successively employs the Laplace transform and linear transformation steps to uncouple the governing set of coupled differential equations. The resulting system of uncoupled ODEs is solved by applying an elementary solution technique. The numerical Laplace inversion is employed to transform back the solutions in the actual time domain. To further analyze the effects of different kinetic parameters, statistical temporal moments are derived from the Laplace-transformed solutions. The current solutions extend and generalize our recent solutions for single-solute transport models of non-reactive liquid chromatography. For verification, the analytical results are compared with the numerical solutions of a high-resolution finite volume scheme. Several case studies of practical interest are considered. Good agreements in the results validate the correctness of semi-analytical solutions and the accuracy of proposed numerical algorithm.

Keywords

Liquid chromatography Non-equilibrium transport Irreversible and reversible reactions Mass transfer Analytical solutions Moment analysis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Ganetsos G, Barker PE (1993) Preparative and production scale chromatography, vol 61. Marcel Dekker Inc, New York, pp 375–523Google Scholar
  2. 2.
    Guiochon G, Lin B (2003) Modeling for preparative chromatography. Academic Press, New YorkGoogle Scholar
  3. 3.
    Guiochon G, Shirazi G, Katti M (2006) Fundamentals of preparative and nonlinear chromatography, 2nd edn. Elsevier Inc., The NetherlandsGoogle Scholar
  4. 4.
    Mazzotti M, Kruglov A, Neri B, Gelosa D, Morbidelli M (1996) A continuous chromatographic reactor: SMBR. Chem Eng Sci 51:1827–1836CrossRefGoogle Scholar
  5. 5.
    Yamaoka K, Nakagawa T (1976) Moment analysis for reaction chromatography. J Chromatogr A 117:1–10CrossRefGoogle Scholar
  6. 6.
    Takeuchi K, Uraguchi Y (1976) Separation conditions of the reactant and the product with a chromatographic moving bed reactor. J Chem Eng Jpn 9:164–166CrossRefGoogle Scholar
  7. 7.
    Takeuchi K, Uraguchi Y (1976) Basic design of chromatographic moving-bed reactors for product refining. J Chem Eng Jpn 9:246–248CrossRefGoogle Scholar
  8. 8.
    Takeuchi K, Uraguchi Y (1977) The effect of the exhausting section on the performance of a chromatographic moving-bed reactor. J Chem Eng Jpn 10:72–74CrossRefGoogle Scholar
  9. 9.
    Takeuchi K, Uraguchi Y (1977) Experimental studies of a chromatographic moving-bed reactor-catalytic oxidation of carbon monoxide on activated alumina as a model reactor. J Chem Eng Jpn 10:455–460CrossRefGoogle Scholar
  10. 10.
    Takeuchi K, Miyauchi T, Uraguchi Y (1978) Computational studies of a chromatographic moving bed reactor for consecutive and reversible reactions. J Chem Eng Jpn 11:216–220CrossRefGoogle Scholar
  11. 11.
    Schweich D, Villermaux J (1978) The chromatographic reactor. A new theoretical approach. Ind Eng Chem Fundam 17:1–7CrossRefGoogle Scholar
  12. 12.
    Villermaux J (1981) The chromatographic reactor. In: Rodrigues AE, Tondeur D (eds) percolation processes: theory and applications. Sijthoff & Noordhoff, MarylandGoogle Scholar
  13. 13.
    Cho BK, Aris R, Carr RW (1982) The mathematical theory of a countercurrent catalytic reactor. Proc R Soc Lond 383:147–189CrossRefGoogle Scholar
  14. 14.
    Petroulas T, Aris R, Carr RW (1985) Analysis of the counter-current moving-bed chromatographic reactor. Comput Math Appl 11:5–34CrossRefGoogle Scholar
  15. 15.
    Carta G (1991) Simultaneous reaction and chromatography, in: Chromatographic and membrane processes in biotechnology. In: Costa CA, Cabral JS (eds) NATO ASI. Kluwer Academic Publishers, Deventer, pp 429–447Google Scholar
  16. 16.
    Binous H, McCoy B (1992) Chromatographic reactions of the three components: application to separations. Chem Eng Sci 47:4333–4343CrossRefGoogle Scholar
  17. 17.
    Sardin M, Schweich D, Villermaux J, Ganetsos G, Barker PE (eds) (1993) Preparative fixed-bed chromatographic reactor. Preparative and production scale chromatography. Marcel Dekker Inc., New YorkGoogle Scholar
  18. 18.
    Lin B, Song F, Guiochon G (2003) Analytical solution of the ideal, nonlinear model of reaction chromatography for a reaction A \(\leftarrow \) B and a parabolic isotherm. J Chromatogr A 1003:91–100CrossRefGoogle Scholar
  19. 19.
    Borren T, Fricke J, Schmidt-Traub H (eds) (2005) Chromatographic reactors in preparative chromatography of fine chemicals and pharmaceutical agents. Wiley-VCH Verlag, Weinheim, pp 371–395Google Scholar
  20. 20.
    Fricke J, Schmidt-Traub H, Kawase M (2005) Chromatographic reactor. Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag, WeinheimGoogle Scholar
  21. 21.
    Javeed S, Qamar S, Seidel-Morgenstern A, Warnecke G (2011) A discontinuous Galerkin method to solve chromatographic models. J Chromatogr A 1218:7137–7146CrossRefGoogle Scholar
  22. 22.
    Javeed S, Qamar S, Seidel-Morgenstern A, Warnecke G (2012) Parametric study of thermal effects in reactive liquid chromatography. Chem Eng J 191:426–440CrossRefGoogle Scholar
  23. 23.
    Qamar S, Bibi S, Khan FU, Shah M, Javeed S, Seidel-Morgenstern A (2014) Irreversible and reversible reactions in a liquid chromatographic column: analytical solutions and moment analysis. Ind Eng Chem Res 53:2461–2472CrossRefGoogle Scholar
  24. 24.
    Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley-Interscience, New YorkGoogle Scholar
  25. 25.
    Van Genuchten MTh (1981) Analytical solutions for chemical transport with simultaneous adsorption, zeroth-order production and first order decay. J Hydrol 49:213–233CrossRefGoogle Scholar
  26. 26.
    Rice RG, Do DD (1995) Applied mathematics and modeling for chemical engineers. Wiley-Interscience, New YorkGoogle Scholar
  27. 27.
    Durbin F (1974) Numerical Inversion of Laplace Transforms: an efficient improvement to Dubner and Abate’s Method. Comput J 17:371–376CrossRefGoogle Scholar
  28. 28.
    Schneider P, Smith JM (1968) Adsorption rate constants from chromatography. AIChE J 14:762–771CrossRefGoogle Scholar
  29. 29.
    Mehta RV, Merson RL, McCoy BJ (1974) Hermite polynomial representation of chromatography elution curves. J Chromatogr A 88:1–6CrossRefGoogle Scholar
  30. 30.
    Linek F, Duduković MP (1982) Representation of breakthrough curves for fixed-bed adsorbers and reactors using moments of the impulse response. Chem Eng J 23:31–36CrossRefGoogle Scholar
  31. 31.
    Javeed S, Qamar S, Ashraf W, Warnecke G, Seidel-Morgenstern A (2013) Analysis and numerical investigation of two dynamic models for liquid chromatography. Chem Eng Sci 90:17–31CrossRefGoogle Scholar
  32. 32.
    Qamar S, Abbasi JN, Javeed S, Shah M, Khan FU, Seidel-Morgenstern A (2013) Analytical solutions and moment analysis of chromatographic models for rectangular pulse injections. J Chromatogr A 1315:92–106CrossRefGoogle Scholar
  33. 33.
    Suzuki M, Smith JM (1971) Kinetic studies by chromatography. Chem Eng Sci 26:221–235CrossRefGoogle Scholar
  34. 34.
    Bibi S, Qamar S, Seidel-Morgenstern A (2015) Irreversible and reversible reactive chromatography: analytical solutions and moment analysis for rectangular pulse injections. J Chromatogr A 1385:49–62CrossRefGoogle Scholar
  35. 35.
    Quezada CR, Clement TP, Lee KK (2004) Generalized solution to multi-dimensional multi-species transport equations coupled with a first-order reaction network involving distinct retardation factors. Adv Water Res 27:507–520CrossRefGoogle Scholar
  36. 36.
    Abramowitz M, Stegun IA (1970) Handbook of mathematical functions. Dover, New York, NYGoogle Scholar
  37. 37.
    Carslaw HS, Jaeger JD (1959) Conduction of heat in solids, 2nd edn. Oxford Unversity Press, LondonGoogle Scholar
  38. 38.
    Javeed S, Qamar S, Seidel-Morgenstern A, Warnecke G (2011) Efficient and accurate numerical simulation of nonlinear chromatographic processes. J Comput Chem Eng 35:2294–2305CrossRefGoogle Scholar
  39. 39.
    Danckwerts PV (1953) Continuous flow systems. Chem Eng Sci 2:1–9CrossRefGoogle Scholar
  40. 40.
    Koren B (1993) A robust upwind discretization method for advection, diffusion and source terms. In: Vreugdenhil CB, Koren B (eds) Numerical methods for advection-diffusion problems, vol 45 of notes on numerical fluid mechanics, chapter 5. Vieweg Verlag, Braunschweig, pp 117-138Google Scholar
  41. 41.
    Trapp O, Schurig V (2001) ChromWin: A computer program for the determination of enantiomerization barriers in dynamic chromatography. Comput Chem 25:187–195CrossRefGoogle Scholar
  42. 42.
    Trapp O, Trapp G, Schurig V (2002) Direct calculation and computer simulation of the enantiomerization barrier of oxazepam in dynamic HPLC experiments-a comparative study. J Biochem Biophys Methods 54:301–313CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Shamsul Qamar
    • 1
    • 3
    Email author
  • Sameena Bibi
    • 2
  • Noreen Akram
    • 1
  • Andreas Seidel-Morgenstern
    • 3
  1. 1.Department of MathematicsCOMSATS Institute of Information TechnologyIslamabadPakistan
  2. 2.Department of MathematicsAir UniversityIslamabadPakistan
  3. 3.Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany

Personalised recommendations