Advertisement

Chromatographia

, Volume 80, Issue 4, pp 547–557 | Cite as

Enantioseparation of Chiral Sulfoxides on Amylose-Based Columns: Comparison of Normal Phase Liquid Chromatography and Supercritical Fluid Chromatography

  • Natalie Kolderová
  • Tomáš Neveselý
  • Jiří Šturala
  • Martin Kuchař
  • Roman Holakovský
  • Michal KohoutEmail author
Original
Part of the following topical collections:
  1. Advances in Chromatography and Electrophoresis & Chiranal 2016

Abstract

We present enantioseparation of a series of racemic sulfoxides on three different amylose-based polysaccharide columns. Two of them have the amylose units modified with dimethylphenyl carbamoyl groups (Chiralpak AD-H and Chiralpak IA), while the third one possesses a carbamoyl moiety with an additional chiral centre (Chiralpak AS-H). The enantioseparation of selected analytes was achieved in high-performance liquid chromatography (HPLC) and the full analyte set was enantiomerically resolved using supercritical fluid chromatography (SFC). Comparing the results obtained in both modes, we show that enantioseparation under SFC conditions is superior to HPLC mode in terms of speed, while retaining excellent enantioselectivity and resolution. Faster elution of analytes was observed on increasing the polarity of the co-solvent (modifier) in the mobile phase. This trend is apparent in both chromatographic modes. Documenting the important role of the additional chiral centre, Chiralpak AS-H provided the best chromatographic parameters resulting in the enantioseparation of all analytes.

Graphical Abstract

Keywords

Enantioseparation Sulfoxides Polysaccharide chiral stationary phases Amylose Supercritical fluid chromatography Liquid chromatography 

Notes

Compliance with Ethical Standards

The work was supported by Czech Science Foundation (Grant number 16-17689Y).

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Liu Y, Gu X-H (2011) Pharmacology of chiral drugs. In: Chiral drugs. Wiley, New York, pp. 323–345Google Scholar
  2. 2.
    Geditz MCK, Lindner W, Lämmerhofer M, Heinkele G, Kerb R, Ramharter M, Schwab M, Hofmann U (2014) Simultaneous quantification of mefloquine (+)- and (−)-enantiomers and the carboxy metabolite in dried blood spots by liquid chromatography/tandem mass spectrometry. J Chromatogr B 968:32–39CrossRefGoogle Scholar
  3. 3.
    Lorenz H, Seidel-Morgenstern A (2014) Processes to separate enantiomers. Angew Chem Int Ed 53:1218–1250CrossRefGoogle Scholar
  4. 4.
    Bentley R (2005) Role of sulfur chirality in the chemical processes of biology. Chem Soc Rev 34:609–624CrossRefGoogle Scholar
  5. 5.
    Mojr V, Herzig V, Buděšínský M, Cibulka R, Kraus T (2010) Flavin-cyclodextrin conjugates as catalysts of enantioselective sulfoxidations with hydrogen peroxide in aqueous media. Chem Commun 46:7599–7601CrossRefGoogle Scholar
  6. 6.
    Tomanová P, Šturala J, Buděšínský M, Cibulka R (2015) A click chemistry approach towards Flavin-cyclodextrin conjugates—bioinspired sulfoxidation catalysts. Molecules 20:19667–19848CrossRefGoogle Scholar
  7. 7.
    Cibulka R (2015) Artificial Flavin systems for chemoselective and stereoselective oxidations. Eur J Org Chem 2015:915–932CrossRefGoogle Scholar
  8. 8.
    Holakovský R, März M, Cibulka R (2015) Urea derivatives based on a 1,1′-binaphthalene skeleton as chiral solvating agents for sulfoxides. Tetrahedron: Asymm 26:1328–1334Google Scholar
  9. 9.
    Pirkle WH, House DW (1979) Chiral high-performance liquid chromatographic stationary phases. 1. Separation of the enantiomers of sulfoxides, amines, amino acids, alcohols, hydroxy acids, lactones, and mercaptans. J Org Chem 44:1957–1960CrossRefGoogle Scholar
  10. 10.
    Welch CJ, Szczerba T, Perrin SR (1997) Some recent high-performance liquid chromatography separations of the enantiomers of pharmaceuticals and other compounds using the Whelk-O 1 chiral stationary phase. J Chromatogr A 758:93–98CrossRefGoogle Scholar
  11. 11.
    Lourenço TC, Armstrong DW, Cass QB (2010) Enantiomeric resolution of a chiral sulfoxide series by LC on synthetic polymeric columns with multimodal elution. Chromatographia 71:361–372CrossRefGoogle Scholar
  12. 12.
    Lienne M, Caude M, Rosset R, Tambuté A (1989) Direct resolution of anthelmintic drug enantiomers on chiral-AGP protein-bonded chiral stationary phase. J Chromatogr A 472:265–270CrossRefGoogle Scholar
  13. 13.
    Mitchell C, Desai M, McCulla R, Jenks W, Armstrong D (2002) Use of native and derivatized cyclodextrin chiral stationary phases for the enantioseparation of aromatic and aliphatic sulfoxides by high performance liquid chromatography. Chromatographia 56:127–135CrossRefGoogle Scholar
  14. 14.
    Berthod A, Xiao TL, Liu Y, Jenks WS, Armstrong DW (2002) Separation of chiral sulfoxides by liquid chromatography using macrocyclic glycopeptide chiral stationary phases. J Chromatogr A 955:53–69CrossRefGoogle Scholar
  15. 15.
    Meričko D, Lehotay J, Čižmárik J (2008) Enantioseparation of chiral sulfoxides using teicoplanine chiral stationary phases and kinetic study of decomposition in human plasma. Pharmazie 63:854–859Google Scholar
  16. 16.
    Meričko D, Lehotay J, Skačáni I, Armstrong DW (2009) Thermodynamic approach to enantioseparation of aryl-methyl sulfoxides on teicoplanin aglycone stationary phase. J Liq ChromRelat Tech 32:331–347CrossRefGoogle Scholar
  17. 17.
    Gegenava M, Chankvetadze L, Farkas T, Chankvetadze B (2014) Enantioseparation of selected chiral sulfoxides in high-performance liquid chromatography with polysaccharide-based chiral selectors in polar organic mobile phases with emphasis on enantiomer elution order. J Sep Sci 37:1083–1088CrossRefGoogle Scholar
  18. 18.
    Cass QB, Batigalhia F (2003) Enantiomeric resolution of a series of chiral sulfoxides by high-performance liquid chromatography on polysaccharide-based columns with multimodal elution. J Chromatogr A 987:445–452CrossRefGoogle Scholar
  19. 19.
    Chankvetadze B, Yamamoto C, Okamoto Y (2000) Extremely high enantiomer recognition in HPLC separation of racemic 2-(benzylsulfinyl)benzamide using cellulose tris(3,5-dichlorophenylcarbamate) as a chiral stationary phase. Chem Lett 29:1176–1177CrossRefGoogle Scholar
  20. 20.
    Chankvetadze B, Yamamoto C, Okamoto Y (2001) Enantioseparation of selected chiral sulfoxides using polysaccharide-type chiral stationary phases and polar organic, polar aqueous–organic and normal-phase eluents. J Chromatogr A 922:127–137CrossRefGoogle Scholar
  21. 21.
    Küsters E, Loux V, Schmid E, Floersheim P (1994) Enantiomeric separation of chiral sulphoxides: screening of cellulose-based sorbents with particular reference to cellulose tribenzoate. J Chromatogr A 666:421–432CrossRefGoogle Scholar
  22. 22.
    Tanaka M, Yamazaki H, Hakusui H (1995) Direct HPLC separation of enantiomers of pantoprazole and other benzimidazole sulfoxides using cellulose-based chiral stationary phases in reversed-phase mode. Chirality 7:612–615CrossRefGoogle Scholar
  23. 23.
    Tanaka K, Muraoka T, Otubo Y, Takahashi H, Ohnishi A (2016) HPLC enantioseparation on a homochiral MOF-silica composite as a novel chiral stationary phase. RSC Adv 6:21293–21301CrossRefGoogle Scholar
  24. 24.
    del Nozal MJ, Toribio L, Bernal JL, Nieto EM, Jiménez JJ (2002) Separation of albendazole sulfoxide enantiomers by chiral supercritical-fluid chromatography. J Biochem Biophys Methods 54:339–345CrossRefGoogle Scholar
  25. 25.
    Liu Y, Berthod A, Mitchell CR, Xiao TL, Zhang B, Armstrong DW (2002) Super/subcritical fluid chromatography chiral separations with macrocyclic glycopeptide stationary phases. J Chromatogr A 978:185–204CrossRefGoogle Scholar
  26. 26.
    Toribio L, Alonso C, del Nozal MJ, Bernal JL, Jiménez JJ (2006) Enantiomeric separation of chiral sulfoxides by supercritical fluid chromatography. J Sep Sci 29:1363–1372CrossRefGoogle Scholar
  27. 27.
    De Klerck K, Mangelings D, Vander Heyden Y (2012) Supercritical fluid chromatography for the enantioseparation of pharmaceuticals. J Pharm Biomed Anal 69:77–92CrossRefGoogle Scholar
  28. 28.
    De Klerck K, Vander Heyden Y, Mangelings D (2014) Pharmaceutical-enantiomers resolution using immobilized polysaccharide-based chiral stationary phases in supercritical fluid chromatography. J Chromatogr A 1328:85–97CrossRefGoogle Scholar
  29. 29.
    Kalíková K, Šlechtová T, Vozka J, Tesařová E (2014) Supercritical fluid chromatography as a tool for enantioselective separation; a review. Anal Chim Acta 821:1–33CrossRefGoogle Scholar
  30. 30.
    Lesellier E, West C (2015) The many faces of packed column supercritical fluid chromatography—a critical review. J Chromatogr A 1382:2–46CrossRefGoogle Scholar
  31. 31.
    Dad’ová J, Svobodová E, Sikorski M, König B, Cibulka R (2012) Photooxidation of sulfides to sulfoxides mediated by tetra-O-acetylriboflavin and visible light. ChemCatChem 4:620–623CrossRefGoogle Scholar
  32. 32.
    Šturala J, Boháčová S, Chudoba J, Metelková R, Cibulka R (2015) Electron-deficient heteroarenium salts: an organocatalytic tool for activation of hydrogen peroxide in oxidations. J Org Chem 80:2676–2699CrossRefGoogle Scholar
  33. 33.
    Belaz KRA, Coimbra M, Barreiro JC, Montanari CA, Cass QB (2008) Multimilligram enantioresolution of sulfoxide proton pump inhibitors by liquid chromatography on polysaccharide-based chiral stationary phase. J Pharm Biomed Anal 47:81–87CrossRefGoogle Scholar
  34. 34.
    Montanari MLC, Cass QB, Leitão A, Andricopulo AD, Montanari CA (2006) The role of molecular interaction fields on enantioselective and nonselective separation of chiral sulfoxides. J Chromatogr A 1121:64–75CrossRefGoogle Scholar
  35. 35.
    Guiochon G, Tarafder A (2011) Fundamental challenges and opportunities for preparative supercritical fluid chromatography. J Chromatogr A 1218:1037–1114CrossRefGoogle Scholar
  36. 36.
    Taylor LT (2009) Supercritical fluid chromatography for the 21st century. J Supercrit Fluids 47:566–573CrossRefGoogle Scholar
  37. 37.
    West KN, Wheeler C, McCarney JP, Griffith KN, Bush D, Liotta CL, Eckert CA (2001) In situ formation of alkylcarbonic acids with CO2. J Phys Chem A 105:3947–3948CrossRefGoogle Scholar
  38. 38.
    Wolrab D, Kohout M, Boras M, Lindner W (2013) Strong cation exchange-type chiral stationary phase for enantioseparation of chiral amines in subcritical fluid chromatography. J Chromatogr A 1289:94–104CrossRefGoogle Scholar
  39. 39.
    Stringham RW, Blackwell JA (1997) Factors that control successful entropically driven chiral separations in SFC and HPLC. Anal Chem 69:1414–1420CrossRefGoogle Scholar
  40. 40.
    Gyllenhaal O, Stefansson M (2005) Reversal of elution order for profen acid enantiomers in packed-column SFC on Chiralpak AD. Chirality 17:257–265CrossRefGoogle Scholar
  41. 41.
    Gargano AG, Kohout M, Macíková P, Lämmerhofer M, Lindner W (2013) Direct high-performance liquid chromatographic enantioseparation of free α-, β- and γ-aminophosphonic acids employing cinchona-based chiral zwitterionic ion exchangers. Anal Bioanal Chem 405:8027–8038CrossRefGoogle Scholar
  42. 42.
    Mahut M, Lindner W, Lämmerhofer M, Gargano A, Zhang T, Franco P (2012) Enantiomer and topoisomer separation of acidic compounds on anion-exchanger chiral stationary phases by HPLC and SFC. LCGC Europe 25:11Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Forensic Laboratory of Biologically Active SubstancesUniversity of Chemistry and Technology PraguePrague 6Czech Republic
  2. 2.Department of Organic ChemistryUniversity of Chemistry and Technology PraguePrague 6Czech Republic
  3. 3.Department of Chemistry of Natural CompoundsUniversity of Chemistry and Technology PraguePrague 6Czech Republic

Personalised recommendations