, Volume 79, Issue 3–4, pp 255–260 | Cite as

Potential of Online Comprehensive Two-Dimensional Liquid Chromatography For Micro-Preparative Separations of Simple Samples

  • Amélie Corgier
  • Morgan Sarrut
  • Gérard Crétier
  • Sabine HeinischEmail author
Short Communication


Generally online comprehensive two-dimensional liquid chromatography (LC × LC) is used at preparative scale to prepare pure compounds from very complex samples which cannot be separated by one-dimensional liquid chromatography (1D-LC), even at analytical scale. In this work, micro-preparative online LC × LC was evaluated for the recovery of minor components from a simple mixture which can be separated by 1D-LC. This study is a proof of concept made from a test sample of four compounds which were separated by two 1D-LC methods and an LC × LC method based on the previous 1D-LC ones. The comparison of the preparative performance of the three methods shows that online LC × LC was able to achieve a 12-fold gain in amount recovered per injection compared to 1D-LC.


Two-dimensional liquid chromatography Online comprehensive mode Micro-preparative separations Laboratory scale 


  1. 1.
    Wehrli A, Hermann U, Huber JFK (1976) Effect of phase system selectivity in preparative column liquid chromatography. J Chromatogr 125:59–70. doi: 10.1016/S0021-9673(00)93811-1 CrossRefGoogle Scholar
  2. 2.
    Wong V, Shalliker RA (2004) Isolation of the active constituents in natural materials by “heart-cutting” isocratic reversed-phase two-dimensional liquid chromatography. J Chromatogr A 1036:15–24. doi: 10.1016/j.chroma.2004.02.003 CrossRefGoogle Scholar
  3. 3.
    Jiang Y, Zhao W, Feng C et al (2009) Isolation and purification of isoflavonoids from Rhizoma Belamcandae by two-dimensional preparative high-performance liquid chromatography with column switch technology. Biomed Chromatogr 23:1064–1072. doi: 10.1002/bmc.1224 CrossRefGoogle Scholar
  4. 4.
    Xie Y, Zhao W, Zhou T et al (2010) An efficient strategy based on MAE, HPLC-DAD-ESI-MS/MS and 2D-prep-HPLC-DAD for the rapid extraction, separation, identification and purification of five active coumarin components from radix angelicae dahuricae. Phytochem Anal 21:473–482. doi: 10.1002/pca.1222 CrossRefGoogle Scholar
  5. 5.
    Rezadoost H, Ghassempour A (2012) Two-dimensional hydrophilic interaction/reversed-phase liquid chromatography for the preparative separation of polar and non-polar taxanes. Phytochem Anal 23:164–170. doi: 10.1002/pca.1338 CrossRefGoogle Scholar
  6. 6.
    Zhang Y, Zeng L, Pham C, Xu R (2014) Preparative two-dimensional liquid chromatography/mass spectrometry for the purification of complex pharmaceutical samples. J Chromatogr A 1324:86–95. doi: 10.1016/j.chroma.2013.11.022 CrossRefGoogle Scholar
  7. 7.
    Li K, Zhu W, Fu Q et al (2013) Purification of amide alkaloids from Piper longum L. using preparative two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography. Analyst 138:3313–3320. doi: 10.1039/C3AN00016H CrossRefGoogle Scholar
  8. 8.
    Jiang L, Tao Y, Wang D et al (2014) A novel two-dimensional preparative chromatography method designed for the separation of traditional animal Tibetan medicine Osteon Myospalacem Baileyi. J Sep Sci 37:3060–3066. doi: 10.1002/jssc.201400564 CrossRefGoogle Scholar
  9. 9.
    Qiu Y-K, Chen F-F, Zhang L-L et al (2014) Two-dimensional preparative liquid chromatography system for preparative separation of minor amount components from complicated natural products. Anal Chim Acta 820:176–186. doi: 10.1016/j.aca.2014.02.023 CrossRefGoogle Scholar
  10. 10.
    Wei Y, Huang W, Gu Y (2013) Online isolation and purification of four phthalide compounds from Chuanxiong rhizoma using high-speed counter-current chromatography coupled with semi-preparative liquid chromatography. J Chromatogr A 1284:53–58. doi: 10.1016/j.chroma.2013.01.103 CrossRefGoogle Scholar
  11. 11.
    Liu J-L, Wang X-Y, Zhang L-L et al (2014) Two-dimensional countercurrent chromatography × high performance liquid chromatography with heart-cutting and stop-and-go techniques for preparative isolation of coumarin derivatives from Peucedanum praeruptorum Dunn. J Chromatogr A 1374:156–163. doi: 10.1016/j.chroma.2014.11.053 CrossRefGoogle Scholar
  12. 12.
    Qiu Y-K, Yan X, Fang M-J et al (2014) Two-dimensional countercurrent chromatography × high performance liquid chromatography for preparative isolation of toad venom. J Chromatogr A 1331:80–89. doi: 10.1016/j.chroma.2014.01.029 CrossRefGoogle Scholar
  13. 13.
    Golshan-Shirazi S, Guiochon G (1991) Optimization of experimental conditions in preparative liquid chromatography. J Chromatogr A 536:57–73. doi: 10.1016/S0021-9673(01)89236-0 CrossRefGoogle Scholar
  14. 14.
    Vajda P, Kamarei F, Felinger A, Guiochon G (2014) Comparison of volume and concentration overloadings in preparative enantio-separations by supercritical fluid chromatography. J Chromatogr A 1341:57–64. doi: 10.1016/j.chroma.2014.03.034 CrossRefGoogle Scholar
  15. 15.
    Schlinge D, Scherpian P, Schembecker G (2010) Comparison of process concepts for preparative chromatography. Chem Eng Sci 65:5373–5381. doi: 10.1016/j.ces.2010.06.030 CrossRefGoogle Scholar
  16. 16.
    Szántay C Jr, Béni Z, Balogh G, Gáti T (2006) The changing role of NMR spectroscopy in off-line impurity identification: a conceptual view. TrAC Trends Anal Chem 25:806–820. doi: 10.1016/j.trac.2006.06.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Amélie Corgier
    • 1
  • Morgan Sarrut
    • 1
  • Gérard Crétier
    • 1
  • Sabine Heinisch
    • 1
    Email author
  1. 1.Institut des Sciences AnalytiquesUniversité de Lyon, UMR CNRS UCBL ENS 5280VilleurbanneFrance

Personalised recommendations