, Volume 78, Issue 19–20, pp 1263–1270 | Cite as

Nonderivatized Sarcosine Analysis by Gas Chromatography after Solid-Phase Microextraction by Newly Synthesized Monolithic Molecularly Imprinted Polymer

  • Hamid Hashemi-Moghaddam
  • Mohammad Hagigatgoo


In this study, a simple method for analysis of nonderivatized sarcosine was developed by gas chromatography. It is based on solid-phase microextraction of sarcosine on a novel synthesized solid-phase microextraction (SPME) fiber. A monolithic SPME fiber was fabricated based on a molecularly imprinted polymer that could be coupled with gas chromatography for extraction and determination of sarcosine. Extraction time, pH, and ionic strength were investigated as important factors in the extraction procedure. The fabricated fiber was firm, inexpensive, stable, and selective, which are vital characteristics for SPME. The selectivity of the fabricated fiber in relation to analog compounds was also investigated. Under optimum conditions, the calibration curve was linear in the range of 1–100 mg L−1 (R 2 = 0.987). High extraction efficiency for sarcosine was obtained with a detection limit of 0.37 mg L−1. The fabricated fiber was successfully applied for SPME of sarcosine from urine after its extraction, followed by gas chromatography flame ionization detector analysis.


Gas chromatography Sarcosine Molecularly imprinted polymer Solid-phase microextraction 



We are grateful to the Laboratory Complex of Damghan Branch, Islamic Azad University and Pars Material Research and Testing (PMRT) for valuable technical assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Wu H, Liu T, Ma C, Xue R, Deng C, Zeng H, Shen X (2011) Anal Bioanal Chem 401:635–646CrossRefGoogle Scholar
  2. 2.
    Ma G, Chen L (2014) Food Anal Methods 7:377–388CrossRefGoogle Scholar
  3. 3.
    Magdic S, Boyd-Boland A, Jinno K, Pawliszyn JB (1996) J Chromatogr A 736:219–228CrossRefGoogle Scholar
  4. 4.
    Adam HA (2003) A solid phase microextraction/gas chromatography method for estimating the concentrations of chlorpyrifos, endosulphan-alpha, edosulphan-beta and endosulphan sulphate in water. Doctoral dissertationGoogle Scholar
  5. 5.
    Sarafraz-Yazdi A, Abbasian M, Amiri A (2012) Food Chem 131:698–704CrossRefGoogle Scholar
  6. 6.
    Hashemi Moghaddam H, Alaeian MR (2014) J Chin Chem SocGoogle Scholar
  7. 7.
    Kim T-K, Kim S, Lee K-G (2010) Food Chem 123:1328–1333CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Bicchi C, Ruosi MR, Cagliero C, Cordero C, Liberto E, Rubiolo P, Sgorbini B (2011) J Chromatogr A 1218:753–762CrossRefGoogle Scholar
  10. 10.
    Bianchi F, Careri M, Mangia A, Musci M (2006) J Chromatogr A 1102:268–272CrossRefGoogle Scholar
  11. 11.
    Goldmann T, Périsset A, Scanlan F, Stadler RH (2005) Analyst 130:878–883CrossRefGoogle Scholar
  12. 12.
    Deng C, Li N, Zhang X (2004) Rapid Commun Mass Spectrom 18:2558–2564CrossRefGoogle Scholar
  13. 13.
    Pasikanti KK, Ho P, Chan E (2008) J Chromatogr B 871:202–211CrossRefGoogle Scholar
  14. 14.
    Buchholz KD, Pawliszyn J (1994) Anal Chem 66:160–167CrossRefGoogle Scholar
  15. 15.
    Becalski A, Seaman S (2005) J AOAC Int 88:102–106Google Scholar
  16. 16.
    Becalski A, Forsyth D, Casey V, Lau B-Y, Pepper K, Seaman S (2005) Food Addit Contam 22:535–540CrossRefGoogle Scholar
  17. 17.
    Nyman PJ, Morehouse KM, Perfetti GA, Diachenko GW, Holcomb JR (2008) J AOAC Int 91:414–421Google Scholar
  18. 18.
    Djozan D, Farajzadeh MA, Sorouraddin SM, Baheri T (2011) Chromatographia 73:975–983CrossRefGoogle Scholar
  19. 19.
    Wang HF, Zhu YZ, Yan XP, Gao RY, Zheng JY (2006) Adv Mater 18:3266–3270CrossRefGoogle Scholar
  20. 20.
    Wang HF, Zhu YZ, Lin JP, Yan XP (2008) Electrophoresis 29:952–959CrossRefGoogle Scholar
  21. 21.
    van Nostrum CF (2005) Drug Discov Today Technol 2:119–124CrossRefGoogle Scholar
  22. 22.
    Hashemi-Moghaddam H, Rahimian M, Niromand B (2013) Bull Korean Chem Soc 34:2331CrossRefGoogle Scholar
  23. 23.
    Haupt K, Mosbach K (2000) Chem Rev 100:2495–2504CrossRefGoogle Scholar
  24. 24.
    Haupt K (2003) Anal Chem 75:376 A–383 AGoogle Scholar
  25. 25.
    Andersson LI (2000) J Chromatogr B Biomed Sci Appl 739:163–173CrossRefGoogle Scholar
  26. 26.
    Hashemi-Moghaddam H, Jedi DJ (2015) Int J Environ Anal Chem 95:33–44CrossRefGoogle Scholar
  27. 27.
    Turiel E, Tadeo J, Martin-Esteban A (2007) Anal Chem 79:3099–3104CrossRefGoogle Scholar
  28. 28.
    Djozan D, Baheri T (2007) J Chromatogr A 1166:16–23CrossRefGoogle Scholar
  29. 29.
    Djozan D, Mahkam M, Ebrahimi B (2009) J Chromatogr A 1216:2211–2219CrossRefGoogle Scholar
  30. 30.
    Rajabi Khorrami A, Narouenezhad E (2011) Talanta 86:58–63Google Scholar
  31. 31.
    Wulff G (1995) Angew Chem Int Ed Engl 34:1812–1832CrossRefGoogle Scholar
  32. 32.
    Hashemi-Moghaddam H, Yahyazadeh F, Vardini MT (2014) J AOAC Int 97:1434–1438CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Chemistry, Damghan BranchIslamic Azad UniversityDamghanIran

Personalised recommendations