, Volume 78, Issue 15–16, pp 1057–1070 | Cite as

A Comparison of One-Dimensional and Comprehensive Two-Dimensional Gas Chromatography for Decomposition Odour Profiling Using Inter-Year Replicate Field Trials

  • Katelynn A. Perrault
  • Katie D. Nizio
  • Shari L. Forbes


Decomposition odour analysis involves the chemical profiling of volatile organic compounds produced by decomposing remains. This is important for areas of forensic science that rely on the detection of decomposition odour such as insect attraction to carrion, positive alerts of cadaver dogs to decomposing remains, and the development of field instrumentation for search and recovery procedures. Traditionally decomposition odour analysis has been performed using gas chromatography–quadrupole mass spectrometry (GC–qMS); however, the use of comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC×GC–TOFMS) is rapidly becoming more prevalent. The objective of this study was to compare GC–qMS and GC×GC–TOFMS for decomposition odour profiling based on inter-year replicate field studies using decomposing porcine remains. The increased peak capacity, sensitivity and selectivity afforded by GC×GC–TOFMS allowed peak co-elutions, chromatographic artefacts, and dynamic range to be more easily addressed and managed. Furthermore, the software associated with GC×GC–TOFMS provided several additional benefits including improved peak alignment between samples and increased consistency of reported results, overall allowing for additional statistical tests to be applied following data processing. Future GC–qMS results could be improved by implementing some of these software-associated procedures, potentially reducing the magnitude of variation observed between GC–qMS and GC×GC–TOFMS studies. One-dimensional GC analysis may also benefit substantially from coupling with TOFMS detection to provide an indirect increase in peak capacity using deconvolution. However, the wealth of information gained by using GC×GC–TOFMS in decomposition odour profiling is undoubtedly an asset in this field of research.


GC–qMS GC×GC–TOFMS Forensic chemistry Volatile organic compounds Thermal desorption Non-target analysis 



The authors wish to thank all research group members and extended contacts who have contributed to the planning and execution of field work over the past several years: Maiken Ueland, Kate Trebilcock, LaTara Rust, Amanda Troobnikoff, Laura McGrath, Rebecca Buis, Assoc. Prof. Barbara Stuart, Dr. Paul Thomas, Chris Watson and Robert Chatterton. Clare Sullivan is gratefully acknowledged for her assistance with GC–qMS samples. The authors also wish to thank laboratory technical staff, Dr. David Bishop and Dr. Ronald Shimmon, for their ongoing support. Finally, SGE Analytical Science is recognised for donating research supplies while the Australian Research Council (ARC) and the University of Technology, Sydney (UTS) are acknowledged for providing financial support for this work.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10337_2015_2916_MOESM1_ESM.pdf (263 kb)
Supplementary material 1 (PDF 262 kb)


  1. 1.
    Boumba VA, Ziavrou KS, Vougiouklakis T (2008) Biochemical pathways generating post-mortem volatile compounds co-detected during forensic ethanol analyses. Forensic Sci Int 174:133–151. doi: 10.1016/j.forsciint.2007.03.018 CrossRefGoogle Scholar
  2. 2.
    LeBlanc HN, Logan JG (2010) Exploiting insect olfaction in forensic entomology. In: Amendt J, Goff ML, Campobasso CP, Grassberger M (eds) Current Concepts in Forensic Entomology. Springer, New York, pp 205–222Google Scholar
  3. 3.
    Paczkowski S, Maibaum F, Paczkowska M, Schütz S (2012) Decaying mouse volatiles perceived by Calliphora vicina Rob.-Desv. J Forensic Sci 57:1497–1506. doi: 10.1111/j.1556-4029.2012.02245.x CrossRefGoogle Scholar
  4. 4.
    Kalinová B, Podskalská H, Růzicka J, Hoskovec M (2009) Irresistible bouquet of death-how are burying beetles (Coleoptera: Silphidae: Nicrophorus) attracted by carcasses. Naturwissenschaften 96:889–899. doi: 10.1007/s00114-009-0545-6 CrossRefGoogle Scholar
  5. 5.
    Lorenzo N, Wan T, Harper RJ et al (2003) Laboratory and field experiments used to identify Canis lupus var. familiaris active odor signature chemicals from drugs, explosives, and humans. Anal Bioanal Chem 376:1212–1224. doi: 10.1007/s00216-003-2018-7 CrossRefGoogle Scholar
  6. 6.
    Vass AA, Smith RR, Thompson CV (2004) Decompositional odor analysis database. J Forensic Sci 49:760–769CrossRefGoogle Scholar
  7. 7.
    Vass AA, Smith RR, Thompson CV et al (2008) Odor analysis of decomposing buried human remains. J Forensic Sci 53:384–391. doi: 10.1111/j.1556-4029.2008.00680.x CrossRefGoogle Scholar
  8. 8.
    Statheropoulos M, Spiliopoulou C, Agapiou A (2005) A study of volatile organic compounds evolved from the decaying human body. Forensic Sci Int 153:147–155. doi: 10.1016/j.forsciint.2004.08.015 CrossRefGoogle Scholar
  9. 9.
    Statheropoulos M, Agapiou A, Spiliopoulou C et al (2007) Environmental aspects of VOCs evolved in the early stages of human decomposition. Sci Total Environ 385:221–227. doi: 10.1016/j.scitotenv.2007.07.003 CrossRefGoogle Scholar
  10. 10.
    Dekeirsschieter J, Verheggen FJ, Gohy M et al (2009) Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes. Forensic Sci Int 189:46–53. doi: 10.1016/j.forsciint.2009.03.034 CrossRefGoogle Scholar
  11. 11.
    Vass AA (2012) Odor mortis. Forensic Sci Int 222:234–241. doi: 10.1016/j.forsciint.2012.06.006 CrossRefGoogle Scholar
  12. 12.
    Rosier E, Cuypers E, Dekens M et al (2014) Development and validation of a new TD-GC/MS method and its applicability in the search for human and animal decomposition products. Anal Bioanal Chem 406:3611–3619. doi: 10.1007/s00216-014-7741-8 CrossRefGoogle Scholar
  13. 13.
    Hoffman EM, Curran AM, Dulgerian N et al (2009) Characterization of the volatile organic compounds present in the headspace of decomposing human remains. Forensic Sci Int 186:6–13. doi: 10.1016/j.forsciint.2008.12.022 CrossRefGoogle Scholar
  14. 14.
    Forbes SL, Rust L, Trebilcock K et al (2014) Effect of age and storage conditions on the volatile organic compound profile of blood. Forensic Sci Med Pathol 10:570–582. doi: 10.1007/s12024-014-9610-3 CrossRefGoogle Scholar
  15. 15.
    Cablk ME, Szelagowski EE, Sagebiel JC (2012) Characterization of the volatile organic compounds present in the headspace of decomposing animal remains, and compared with human remains. Forensic Sci Int 220:118–125. doi: 10.1016/j.forsciint.2012.02.007 CrossRefGoogle Scholar
  16. 16.
    Kasper J, Mumm R, Ruther J (2012) The composition of carcass volatile profiles in relation to storage time and climate conditions. Forensic Sci Int 223:64–71. doi: 10.1016/j.forsciint.2012.08.001 CrossRefGoogle Scholar
  17. 17.
    Dekeirsschieter J, Stefanuto P-H, Brasseur C et al (2012) Enhanced characterization of the smell of death by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC–TOFMS). PLoS One 7:e39005. doi: 10.1371/journal.pone.0039005 CrossRefGoogle Scholar
  18. 18.
    Brasseur C, Dekeirsschieter J, Schotsmans EMJ et al (2012) Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the forensic study of cadaveric volatile organic compounds released in soil by buried decaying pig carcasses. J Chromatogr A 1255:163–170. doi: 10.1016/j.chroma.2012.03.048 CrossRefGoogle Scholar
  19. 19.
    Statheropoulos M, Spiliopoulou C, Agapiou A (2011) Combined chemical and optical methods for monitoring the early decay stages of surrogate human models. Forensic Sci Int 210:154–163. doi: 10.1016/j.forsciint.2011.02.023 CrossRefGoogle Scholar
  20. 20.
    Stadler S, Stefanuto P-H, Byer JD et al (2012) Analysis of synthetic canine training aids by comprehensive two-dimensional gas chromatography-time of flight mass spectrometry. J Chromatogr A 1255:202–206. doi: 10.1016/j.chroma.2012.04.001 CrossRefGoogle Scholar
  21. 21.
    Stadler S, Stefanuto P-H, Brokl M et al (2013) Characterization of volatile organic compounds from human analogue decomposition using thermal desorption coupled to comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Anal Chem 85:998–1005. doi: 10.1021/ac302614y CrossRefGoogle Scholar
  22. 22.
    Stefanuto P-H, Perrault K, Stadler S et al (2014) Reading cadaveric decomposition chemistry with a new pair of glasses. ChemPlusChem 79:786–789. doi: 10.1002/cplu.201402003 CrossRefGoogle Scholar
  23. 23.
    Perrault KA, Stefanuto P-H, Stuart BH et al (2015) Reducing variation in decomposition odour profiling using comprehensive two-dimensional gas chromatography. J Sep Sci 38:73–80. doi: 10.1002/jssc.201400935 CrossRefGoogle Scholar
  24. 24.
    Focant J-F, Stefanuto P-H, Brasseur C et al (2014) Forensic cadaveric decomposition profiling by GC × GC–TOFMS analysis of VOCS. Chem Bull Kazakh Natl Univ 4:177–186Google Scholar
  25. 25.
    Forbes SL, Perrault KA, Stefanuto P-H et al (2014) Comparison of the decomposition VOC profile during winter and summer in a moist, mid-latitude (Cfb) climate. PLoS One 9:e113681CrossRefGoogle Scholar
  26. 26.
    Murphy RE, Schure MR, Foley JP (1998) Effect of sampling rate on resolution in comprehensive two-dimensional liquid chromatography. Anal Chem 70:1585–1594CrossRefGoogle Scholar
  27. 27.
    Tranchida PQ, Dugo P, Dugo G, Mondello L (2004) Comprehensive two-dimensional chromatography in food analysis. J Chromatogr A 1054:3–16. doi: 10.1016/j.chroma.2004.07.095 CrossRefGoogle Scholar
  28. 28.
    Tranchida PQ, Donato P, Cacciola F et al (2013) Potential of comprehensive chromatography in food analysis. TrAC Trends Anal Chem 52:186–205. doi: 10.1016/j.trac.2013.07.008 CrossRefGoogle Scholar
  29. 29.
    Panić O, Górecki T (2006) Comprehensive two-dimensional gas chromatography (GCxGC) in environmental analysis and monitoring. Anal Bioanal Chem 386:1013–1023. doi: 10.1007/s00216-006-0568-1 CrossRefGoogle Scholar
  30. 30.
    Almstetter MF, Oefner PJ, Dettmer K (2012) Comprehensive two-dimensional gas chromatography in metabolomics. Anal Bioanal Chem 402:1993–2013. doi: 10.1007/s00216-011-5630-y CrossRefGoogle Scholar
  31. 31.
    Von Mühlen C, Zini CA, Caramão EB, Marriott PJ (2006) Applications of comprehensive two-dimensional gas chromatography to the characterization of petrochemical and related samples. J Chromatogr A 1105:39–50. doi: 10.1016/j.chroma.2005.09.036 CrossRefGoogle Scholar
  32. 32.
    Adahchour M, Beens J, Vreuls R, Brinkman UAT (2006) Recent developments in comprehensive two-dimensional gas chromatography (GC × GC) III. Applications for petrochemicals and organohalogens. TrAC Trends Anal Chem 25:726–741. doi: 10.1016/j.trac.2006.03.005 CrossRefGoogle Scholar
  33. 33.
    Nizio KD, McGinitie TM, Harynuk JJ (2012) Comprehensive multidimensional separations for the analysis of petroleum. J Chromatogr A 1255:12–23CrossRefGoogle Scholar
  34. 34.
    Frysinger G, Gaines RB (2002) GC × GC—a new analytical tool for environmental forensics. Environ Forensics 3:27–34Google Scholar
  35. 35.
    Frysinger GS, Gaines RB (2002) Forensic analysis of ignitable liquids in fire debris by comprehensive two-dimensional gas chromatography. J Forensic Sci 47:471–482Google Scholar
  36. 36.
    Forbes SL, Perrault KA (2014) Decomposition odour profiling in the air and soil surrounding vertebrate carrion. PLoS One 9:e95107. doi: 10.1371/journal.pone.0095107 CrossRefGoogle Scholar
  37. 37.
    Megyesi MS, Nawrocki SP, Haskell NH (2005) Using accumulated degree-days to estimate the postmortem interval from decomposed human remains. J Forensic Sci 50:618–626CrossRefGoogle Scholar
  38. 38.
    Payne J (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46:592–602CrossRefGoogle Scholar
  39. 39.
    Zhou C, Byard RW (2011) Factors and processes causing accelerated decomposition in human cadavers—an overview. J Forensic Leg Med 18:6–9. doi: 10.1016/j.jflm.2010.10.003 CrossRefGoogle Scholar
  40. 40.
    Richards CS, Villet MH (2009) Data quality in thermal summation development models for forensically important blowflies. Med Vet Entomol 23:269–276CrossRefGoogle Scholar
  41. 41.
    Archer M (2004) Rainfall and temperature effects on the decomposition rate of exposed neonatal remains. Sci Justice 44:35–41CrossRefGoogle Scholar
  42. 42.
    Stadler S, Desaulniers J-P, Forbes SL (2014) Inter-year repeatability study of volatile organic compounds from surface decomposition of human analogues. Int J Legal Med. doi: 10.1007/s00414-014-1024-y Google Scholar
  43. 43.
    Tipple CA, Caldwell PT, Kile BM et al (2014) Comprehensive characterization of commercially available canine training aids. Forensic Sci Int 242:242–254. doi: 10.1016/j.forsciint.2014.06.033 CrossRefGoogle Scholar
  44. 44.
    Koh Y, Pasikanti KK, Yap CW, Chan ECY (2010) Comparative evaluation of software for retention time alignment of gas chromatography/time-of-flight mass spectrometry-based metabonomic data. J Chromatogr A 1217:8308–8316. doi: 10.1016/j.chroma.2010.10.101 CrossRefGoogle Scholar
  45. 45.
    Schoenly KG, Haskell NH, Mills DK, Bieme-Ndi C (2006) Recreating death’s acre in the school yard: using pig carcasses as model corpses to teach concepts of forensic entomology & ecological succession. Am Biol Teach 68:402–410CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Centre for Forensic ScienceUniversity of Technology SydneyBroadwayAustralia

Personalised recommendations