Advertisement

Chromatographia

, Volume 78, Issue 11–12, pp 785–793 | Cite as

SDS-PAGE as a Tool for Hydrodynamic Diameter-Dependent Separation of Quantum Dots

  • Sona Krizkova
  • Simona Dostalova
  • Petr Michalek
  • Lukas Nejdl
  • Marketa Kominkova
  • Vedran Milosavljevic
  • Amitava Moulick
  • Marketa Vaculovicova
  • Pavel Kopel
  • Vojtech Adam
  • Rene KizekEmail author
Original

Abstract

The purpose of this study was to test quantum dots (QDs) separation by native and Tris–Glycine SDS-PAGE according to the protocols commonly used for protein analyses. To study the electrophoretic behaviour of quantum dots, ten samples of previously synthesized CdTe QDs stabilized with mercaptosuccinic acid (MSA) were used. Prior to electrophoresis the hydrodynamic diameters of QDs and zeta potentials were determined, as well as the fluorescence properties and stability of QDs in the running buffers. After verification of QDs stability and separation in native polyacrylamide gel, SDS-PAGE in gradient 4–20 % polyacrylamide gel was performed. Under UV irradiation a colour-dependent separation of QDs was observed, which was consistent with their hydrodynamic diameter distribution. The electrophoretic conditions were further optimized with respect to achieving the optimal colour separation, fluorescence stability and to minimize the time of analysis. Based on the results obtained, for further work 15 % polyacrylamide gels with SDS were used and the times (30–60 min) and voltage (100–150 V) used for separation were optimized. Under the optimal separation conditions (30 min, 100 V) the addition of MSA in the concentration range 0–4 mM was used to improve visualization of QDs with diameters in the range from 7 ± 2 to 4 ± 2 nm.

Keywords

Quantum dots SDS-PAGE Electrophoresis Separation Hydrodynamic diameter-dependent 

Abbreviations

QDs

Quantum dots

DLS

Dynamic light scattering

AGE

Agarose gel electrophoresis

TAE

Tris-acetate-EDTA

TBE

Tris-borate-EDTA

PAGE

Polyacrylamide gel electrophoresis

DNA

Deoxyribonucleic acid

SDS

Sodium-dodecyl sulphate

SDS-PAGE

Polyacrylamide gel electrophoresis in presence of sodium-dodecyl sulphate

MPA

Mercaptopropionic acid

MSA

Mercaptosuccinic acid

T-G

Tris-glycine

EDTA

Ethylenediaminetetraacetic acid

Notes

Acknowledgments

Financial support from NanoBioTECell GA CR P102/11/1068 is greatly acknowledged. Authors would like to thank to Ms. Dagmar Uhlirova for technical assistance.

Conflict of interest

The authors have declared no conflict of interest.

Supplementary material

10337_2015_2893_MOESM1_ESM.docx (5.6 mb)
Supplementary material 1 (DOCX 5703 kb)

References

  1. 1.
    Drbohlavova J, Adam V, Kizek R, Hubalek J (2009) Int J Mol Sci 10:656–673. doi: 10.3390/ijms10020656 CrossRefGoogle Scholar
  2. 2.
    Ryvolova M, Chomoucka J, Janu L, Drbohlavova J, Adam V, Hubalek J, Kizek R (2011) Electrophoresis 32:1619–1622. doi: 10.1002/elps.201000634 Google Scholar
  3. 3.
    Kerman K, Endo T, Tsukamoto M, Chikae M, Takamura Y, Tamiya E (2007) Talanta 71:1494–1499. doi: 10.1016/j.talanta.2006.07.027 CrossRefGoogle Scholar
  4. 4.
    Grabolle M, Ziegler J, Merkulov A, Nann T, Resch-Genger U (2008) Stability and fluorescence quantum yield of CdSe-ZnS quantum dots—influence of the thickness of the ZnS shell. In: Wolfbeis OS (ed) Fluorescence methods and applications: spectroscopy, imaging, and probes. Blackwell Publishing, Oxford, pp 235–241Google Scholar
  5. 5.
    Algar WR, Tavares AJ, Krull UJ (2010) Anal Chim Acta 673:1–25. doi: 10.1016/j.aca.2010.05.026 CrossRefGoogle Scholar
  6. 6.
    Bailey RE, Smith AM, Nie SM (2004) Physica E 25:1–12. doi: 10.1016/j.physe.2004.07.013 CrossRefGoogle Scholar
  7. 7.
    Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biomaterials 28:4717–4732. doi: 10.1016/j.biomaterials.2007.07.014 CrossRefGoogle Scholar
  8. 8.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435–446. doi: 10.1038/nmat1390 CrossRefGoogle Scholar
  9. 9.
    Somers R, Bawendi M, Nocera D (2007) Green Chem 9:T37–T37Google Scholar
  10. 10.
    Gerion D, Parak WJ, Williams SC, Zanchet D, Micheel CM, Alivisatos AP (2002) J Am Chem Soc 124:7070–7074. doi: 10.1021/ja017822w CrossRefGoogle Scholar
  11. 11.
    Ying MS, Feng Y, Duan RY, Li YJ, Yu NK (2012) Chin Sci Bull 57:1903–1909. doi: 10.1007/s11434-012-5147-6 CrossRefGoogle Scholar
  12. 12.
    Prabhakaran P, Kim WJ, Lee KS, Prasad PN (2012) Opt Mater Expr 2:578–593CrossRefGoogle Scholar
  13. 13.
    Autenrieth T, Wagner J, Hempelmann R, Hartl W, Robert A, Grubel G (2004) Appl Organomet Chem 18:520–522. doi: 10.1002/aoc.754 CrossRefGoogle Scholar
  14. 14.
    Bucking W, Massadeh S, Merkulov A, Xu S, Nann T (2010) Anal Bioanal Chem 396:1087–1094. doi: 10.1007/s00216-009-3107-z CrossRefGoogle Scholar
  15. 15.
    Ehlert O, Bucking W, Riegler J, Merkulov A, Nann T (2008) Microchim Acta 160:351–356. doi: 10.1007/s00604-007-0798-8 CrossRefGoogle Scholar
  16. 16.
    Liu FK, Hsu YT, Wu CH (2005) J Chromatogr A 1083:205–214. doi: 10.1016/j.chroma.2005.06.035 CrossRefGoogle Scholar
  17. 17.
    Radko SP, Chrambach A (2002) Electrophoresis 23:1957–1972. doi: 10.1002/1522-2683(200207)23:13<1957:aid-elps1957>3.0.co;2-i CrossRefGoogle Scholar
  18. 18.
    Xu SH, Liu PP, Lu X, Zhang J, Huang LY, Hua WH, He DC, Ouyang J (2014) Electrophoresis 35:546–553. doi: 10.1002/elps.201300308 CrossRefGoogle Scholar
  19. 19.
    Kim JY, Kim HB, Jang DJ (2013) Electrophoresis 34:911–916. doi: 10.1002/elps.201200492 CrossRefGoogle Scholar
  20. 20.
    Sweeney SF, Woehrle GH, Hutchison JE (2006) J Am Chem Soc 128:3190–3197. doi: 10.1021/ja0558241 CrossRefGoogle Scholar
  21. 21.
    Fu AH, Micheel CM, Cha J, Chang H, Yang H, Alivisatos AP (2004) J Am Chem Soc 126:10832–10833. doi: 10.1021/ja04647x CrossRefGoogle Scholar
  22. 22.
    Zeng QH, Zhang YL, Song K, Kong XG, Aalders MCG, Zhang H (2009) Talanta 80:307–312. doi: 10.1016/j.talanta.2009.06.061 CrossRefGoogle Scholar
  23. 23.
    Pinaud F, King D, Moore HP, Weiss S (2004) J Am Chem Soc 126:6115–6123. doi: 10.1021/ja031691c CrossRefGoogle Scholar
  24. 24.
    Pons T, Uyeda HT, Medintz IL, Mattoussi H (2006) J Phys Chem B 110:20308–20316. doi: 10.1021/jp065041h CrossRefGoogle Scholar
  25. 25.
    Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) J Phys Chem B 105:8861–8871. doi: 10.1021/jp0105488 CrossRefGoogle Scholar
  26. 26.
    Park S, Sinha N, Hamad-Schifferli K (2010) Langmuir 26:13071–13075. doi: 10.1021/la1024108 CrossRefGoogle Scholar
  27. 27.
    Blackshear PJ (1984) Methods Enzymol 104:237–255Google Scholar
  28. 28.
    Merian J, Gravier J, Navarro F, Texier I (2012) Molecules 17:5564–5591. doi: 10.3390/molecules17055564 CrossRefGoogle Scholar
  29. 29.
    Santra S, Malhotra A (2011) Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:501–510. doi: 10.1002/wnan.134 Google Scholar
  30. 30.
    Shi XY, Ganser TR, Sun K, Balogh LP, Baker JR (2006) Nanotechnology 17:1072–1078. doi: 10.1088/0957-4484/17/4/038 CrossRefGoogle Scholar
  31. 31.
    Laemmli UK (1970) Nature 227:680–685CrossRefGoogle Scholar
  32. 32.
    Clarke S, Pinaud F, Beutel O, You CJ, Piehler J, Dahan M (2010) Nano Lett 10:2147–2154. doi: 10.1021/nl100825n CrossRefGoogle Scholar
  33. 33.
    Lo RC, Ugaz VM (2006) Electrophoresis 27:373–386. doi: 10.1002/elps.200500571 CrossRefGoogle Scholar
  34. 34.
    Sarbolouki MN, Mahnam K, Rafiee-Pour HA (2004) Electrophoresis 25:2907–2911. doi: 10.1002/elps.2000305973 CrossRefGoogle Scholar
  35. 35.
    Wang TT, Jiang X (2013) Acs Appl Mater Interfaces 5:1190–1196. doi: 10.1021/am302234z CrossRefGoogle Scholar
  36. 36.
    Heafey E, Laferriere M, Scaiano JC (2007) Photochem Photobiol Sci 6:580–584. doi: 10.1039/b616616d CrossRefGoogle Scholar
  37. 37.
    Galian RE, Scaiano JC (2009) Photochem Photobiol Sci 8:70–74. doi: 10.1039/b807580h CrossRefGoogle Scholar
  38. 38.
    Chen QD, Zhao WF, Fung YS (2011) Electrophoresis 32:1252–1257. doi: 10.1002/elps.201000683 CrossRefGoogle Scholar
  39. 39.
    Aoki YB, Suzuki KT (1991) Methods Enzymol 205:108–114. doi: 10.1016/0076-6879(91)05092-a Google Scholar
  40. 40.
    Neeleshwar S, Chen CL, Tsai CB, Chen YY, Chen CC, Shyu SG, Seehra MS (2005) Phys Rev B 71:1–4. doi: 10.1103/PhysRevB.71.201307 CrossRefGoogle Scholar
  41. 41.
    Biju V, Itoh T, Anas A, Sujith A, Ishikawa M (2008) Anal Bioanal Chem 391:2469–2495. doi: 10.1007/s00216-008-2185-7 CrossRefGoogle Scholar
  42. 42.
    Mutavdzic D, Xu JM, Thakur G, Triulzi R, Kasas S, Jeremic M, Leblanc R, Radotic K (2011) Analyst 136:2391–2396. doi: 10.1039/c0an00802h CrossRefGoogle Scholar
  43. 43.
    Sharma PK, Dutta RK, Liu CH, Pandey R, Pandey AC (2010) Mater Lett 64:1183–1186. doi: 10.1016/j.matlet.2010.02.045 CrossRefGoogle Scholar
  44. 44.
    Hlavacek A, Skladal P (2012) Electrophoresis 33:1427–1430. doi: 10.1002/elps.201100696 CrossRefGoogle Scholar
  45. 45.
    Singh J, Verma NK (2012) J Supercond Nov Magn 25:2425–2430. doi: 10.1007/s10948-012-1631-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sona Krizkova
    • 1
    • 2
  • Simona Dostalova
    • 1
    • 2
  • Petr Michalek
    • 1
    • 2
  • Lukas Nejdl
    • 1
    • 2
  • Marketa Kominkova
    • 1
    • 2
  • Vedran Milosavljevic
    • 1
    • 2
  • Amitava Moulick
    • 1
    • 2
  • Marketa Vaculovicova
    • 1
    • 2
  • Pavel Kopel
    • 1
    • 2
  • Vojtech Adam
    • 1
    • 2
  • Rene Kizek
    • 1
    • 2
    Email author
  1. 1.Department of Chemistry and Biochemistry, Faculty of AgronomyMendel University in BrnoBrnoCzech Republic
  2. 2.Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic

Personalised recommendations