Skip to main content
Log in

Effect of Suboptimal Sampling and Handling Conditions on Urinary Metabolic Profiles

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Collection and storage of the clinical samples are crucial factors in the metabolomic workflows. However, with the expansion of metabolomics into the clinical domain and towards the large field studies in particular, the high sampling/storage standards practiced in the tightly controlled hospital environment cannot always be guaranteed. Thus, if the samples are exposed to suboptimal conditions and their integrity is compromised should they be discarded? Or such samples retain physiologically relevant information and can be of use? To explore the options we analyzed 117 urine samples that were collected under two different conditions. Part of the samples were collected within a clinical setting under optimal conditions, another part by patients at home and shipped to the hospital by mail. All samples were analyzed by liquid chromatography–mass spectrometry (LC–MS) and proton nuclear magnetic resonance (1H NMR) spectroscopy. Multivariate modelling revealed clear differences between the two sampling conditions for both LC–MS and 1H NMR data sets. However, the differential metabolites appeared to be platform-specific, which clearly emphasizes the complementary nature of both techniques. The analysis of the samples that were exposed to suboptimal conditions revealed that age and body mass index remain as dominant traits of the metabolic profile, although their influence was stronger for LC–MS data. In conclusion, although it is important to ensure adequate sample collection and storage conditions, urine samples that do not fulfil these criteria still retain valuable physiological information and as such thus they could be of use for metabolomic studies when no alternative is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gupta A, Bansal N, Houston B (2012) Expert Rev Mol Diagn 12:361–369. doi:10.1586/erm.12.27

    Article  CAS  Google Scholar 

  2. Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, Nicholson JK (2007) Nat Protoc 2:2692–2703. doi:10.1038/nprot.2007.376

    Article  CAS  Google Scholar 

  3. Holland NT, Pfleger L, Berger E, Ho A, Bastaki M (2005) Toxicol Appl Pharmacol 206:261–268. doi:10.1016/j.taap.2004.10.024

    Article  CAS  Google Scholar 

  4. Tuck MK, Chan DW, Chia D, Godwin AK, Grizzle WE, Krueger KE, Rom W, Sanda M, Sorbara L, Stass S, Wang W, Brenner DE (2009) J Proteome Res 8:113–117. doi:10.1021/pr800545q

    Article  CAS  Google Scholar 

  5. Lodi A, Tiziani S, Khanim FL, Gunther UL, Viant MR, Morgan GJ, Bunce CM, Drayson MT (2013) PLoS One 8:e56422. doi:10.1371/journal.pone.0056422

    Article  CAS  Google Scholar 

  6. Voet NB, Bleijenberg G, Padberg GW, van Engelen BG, Geurts AC (2010) BMC Neurol 10:56. doi:10.1186/1471-2377-10-56

    Article  Google Scholar 

  7. Nevedomskaya E, Mayboroda OA, Deelder AM (2011) Mol BioSyst 7:3214–3222. doi:10.1039/c1mb05280b

    Article  CAS  Google Scholar 

  8. Pacchiarotta T, Hensbergen PJ, Wuhrer M, van Nieuwkoop C, Nevedomskaya E, Derks RJ, Schoenmaker B, Koeleman CA, van Dissel J, Deelder AM, Mayboroda OA (2012) J Proteomics 75:1067–1073. doi:10.1016/j.jprot.2011.10.021

    Article  CAS  Google Scholar 

  9. Nevedomskaya E, Derks R, Deelder AM, Mayboroda OA, Palmblad M (2009) Anal Bioanal Chem 395:2527–2533. doi:10.1007/s00216-009-3166-1

    Article  CAS  Google Scholar 

  10. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) Anal Chem 78:779–787. doi:10.1021/ac051437y

    Article  CAS  Google Scholar 

  11. Coron A, Vanhamme L, Antoine JP, Van Hecke P, Van Huffel S (2001) J Magn Reson 152:26–40. doi:10.1006/jmre.2001.2385

    Article  CAS  Google Scholar 

  12. Smilde AK, van der Werf MJ, Bijlsma S (2005) van der Werff-van der Vat BJ, Jellema RH. Anal Chem 77:6729–6736. doi:10.1021/ac051080y

    Article  CAS  Google Scholar 

  13. Rasmussen LG, Savorani F, Larsen TM, Dragsted LO, Astrup A, Engelsen SB (2011) Metabolomics 7:71–83. doi:10.1007/s11306-010-0234-7

    Article  CAS  Google Scholar 

  14. Sweatman BC, Farrant RD, Lindon JC (1993) J Pharmaceut Biomed 11:169–172. doi:10.1016/0731-7085(93)80138-Q

    Article  CAS  Google Scholar 

  15. Lauridsen M, Hansen SH, Jaroszewski JW, Cornett C (2007) Anal Chem 79:1181–1186. doi:10.1021/Ac061354x

    Article  CAS  Google Scholar 

  16. Maher AD, Zirah SF, Holmes E, Nicholson JK (2007) Anal Chem 79:5204–5211. doi:10.1021/ac070212f

    Article  CAS  Google Scholar 

  17. Saude EJ, Sykes BD (2007) Metabolomics 3:19–27. doi:10.1007/s11306-006-0042-2

    Article  CAS  Google Scholar 

  18. Crockford DJ, Holmes E, Lindon JC, Plumb RS, Zirah S, Bruce SJ, Rainville P, Stumpf CL, Nicholson JK (2006) Anal Chem 78:363–371. doi:10.1021/Ac051444m

    Article  CAS  Google Scholar 

  19. Crockford DJ, Maher AD, Ahmadi KR, Barrett A, Plumb RS, Wilson ID, Nicholson JK (2008) Anal Chem 80:8353. doi:10.1021/Ac801996w

    Article  CAS  Google Scholar 

  20. Balog CI, Meissner A, Goraler S, Bladergroen MR, Vennervald BJ, Mayboroda OA, Deelder AM (2011) Mol BioSyst 7:1473–1480. doi:10.1039/c0mb00262c

    Article  CAS  Google Scholar 

  21. Singer BH, Utzinger J, Ryff CD, Wang Y, Holmes E (2007) Exploiting the potential of metabonomics in large population studies: three venues. In: Lindon JC, Nicholson JK, Holmes E (eds) The handbook of metabolomics. Elsevier, Amsterdam

    Google Scholar 

  22. Kochhar S, Jacobs DM, Ramadan Z, Berruex F, Fuerholz A, Fay LB (2006) Anal Biochem 352:274–281. doi:10.1016/j.ab.2006.02.033

    Article  CAS  Google Scholar 

  23. Delanghe J, Speeckaert M (2014) Biochem Medica 24:89–104

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg A. Mayboroda.

Additional information

Published in the topical collection Recent Developments in Clinical Omics with guest editors Martin Giera and Manfred Wuhrer.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 716 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morello, J., Nevedomskaya, E., Pacchiarotta, T. et al. Effect of Suboptimal Sampling and Handling Conditions on Urinary Metabolic Profiles. Chromatographia 78, 429–434 (2015). https://doi.org/10.1007/s10337-014-2778-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-014-2778-6

Keywords

Navigation