, Volume 77, Issue 1–2, pp 151–158 | Cite as

Application of HS-SPME with Poly(1-Vinyl-3-Hexylimidazolium Chloride) Polymeric Ionic Liquid Coating Using GC–MS to Determine Volatile Fatty Acids in Dairy Wastewater

  • Marta Wasielewska
  • Bogdan Zygmunt
  • Jared L. Anderson


Volatile fatty acids were determined in this study using headspace solid-phase microextraction (HS-SPME) with a poly(1-vinyl-3-hexylimidazolium chloride) polymeric ionic liquid coated fiber followed by gas chromatography–mass spectrometry. Experimental parameters such as extraction time and temperature, sample volume as well as desorption time and temperature were optimized. Detection limits of the method were in the range of 0.13–0.26 mg/L. The coefficient of variation ranged from 0.12 to 6.9 %. The method was applied to determine volatile fatty acids in dairy wastewater from different operations and in bulk wastewater.


Polymeric ionic liquids Solid-phase microextraction Gas chromatography–mass spectrometry Volatile fatty acids Poly(1-vinyl-3-hexylimidazolium chloride) 



This work was supported by the project: “The development of interdisciplinary doctoral studies at the Gdansk University of Technology in modern technologies” (Project No: POKL.04.01.01-00-368/09); Duration: 1.10.2009–30.09.2015. This work was also financially supported by the National Science Center (Poland) in the framework of the “PRELUDIUM” (Decision No.: DEC-2012/05/N/ST4/02026). This research work was supported by the European Social Fund, the State Budget and the Pomorskie Voivodeship Budget according to the Operational Programme Human Capital, Priority VIII, Action 8.2, Under-action 8.2.2: ‘Regional Innovation Strategy’ within the system project of the Pomorskie Voivodeship “InnoDoktorant—Scholarships for PhD students, Vth edition”.


  1. 1.
    Narkis N, Henfeld-Furie S (1978) Water Res 12:437–446CrossRefGoogle Scholar
  2. 2.
    Lim SJ, Choi DW, Lee WG, Kwon S, Chang HN (2000) Biotechnol Bioprocess Eng 22:543–545Google Scholar
  3. 3.
    Lim SJ, Kim EY, Ahn YH, Chang HN (2008) Korean J Chem Eng 25:129–133CrossRefGoogle Scholar
  4. 4.
    Lim SJ, Kim EY, Jeong CM, Choi JDR, Ahn YH, Chang HN (2008) Chang. Bioresour Technol 99:7866–7874CrossRefGoogle Scholar
  5. 5.
    Dragicevic TL, Hren MZ, Grgas D, Buzdum I, Curlin M (2010) Mljekarstvo 60:191Google Scholar
  6. 6.
    Hong C, Haiyun W (2010) Bioresour Technol 101:5487–5493CrossRefGoogle Scholar
  7. 7.
    Fernandez FJ, Castro MC, Villasenor J, Rodriguez L (2011) Chem Eng J 166:559–567CrossRefGoogle Scholar
  8. 8.
    Larreta J, Vallejo A, Bilbao U, Alonso A, Arana G, Zuloaga O (2006) J Chromatogr A 1136:1–9CrossRefGoogle Scholar
  9. 9.
    Abalosa M, Bayona JM (2000) J Chromatogr A 891:287–294CrossRefGoogle Scholar
  10. 10.
    Banel A, Wasielewska M, Zygmunt B (2011) Anal Bioanal Chem 399:3299–3303CrossRefGoogle Scholar
  11. 11.
    Abalosa M, Bayona JM, Pawliszyn J (2000) J Chromatogr A 873:107–115CrossRefGoogle Scholar
  12. 12.
    Feng L, Huang Y, Wang H (2008) J Chromatogr Sci 46:577–584CrossRefGoogle Scholar
  13. 13.
    Shao-Pin Y (1999) Chemosphere 38:823–834CrossRefGoogle Scholar
  14. 14.
    Mills GA, Walker V, Mughal H (1999) J Chromatogr B 730:113–122CrossRefGoogle Scholar
  15. 15.
    Zhao H, Baker GA, Song Z, Olubajo O, Crittle T, Peters D (2008) Green Chem 10:696–705CrossRefGoogle Scholar
  16. 16.
    Meng Y, Pino V, Anderson JL (2011) Anal Chim Acta 687:141–149CrossRefGoogle Scholar
  17. 17.
    Zhao F, Meng Y, Anderson JL (2008) J Chromatogr A 1208:1–9CrossRefGoogle Scholar
  18. 18.
    Banel A, Wasielewska M, Zygmunt B (2011) Anal Bioanal Chem 399(9):3299–3303Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marta Wasielewska
    • 1
  • Bogdan Zygmunt
    • 1
  • Jared L. Anderson
    • 2
  1. 1.Department of Analytical Chemistry, Chemical FacultyGdańsk University of TechnologyGdańskPoland
  2. 2.Department of ChemistryThe University of ToledoToledoUSA

Personalised recommendations