Advertisement

Chromatographia

, Volume 77, Issue 1–2, pp 15–24 | Cite as

Review of SBSE Technique for the Analysis of Pesticide Residues in Fruits and Vegetables

  • Lukman B. Abdulra’uf
  • Guan H. Tan
Review

Abstract

Stir bar sorptive extraction (SBSE) is a microextraction technique, introduced to overcome the problem of limited extraction capacity and fragile fiber coatings inherent in the solid phase microextraction technique. The major limitations of the SBSE technique are that only polydimethylsiloxane has been commercially available, this reduces its use to non-polar analytes, and its tedious reconstitution step which can lead to loss of analytes and introduction of impurities. The current trend has been aimed at the use of other materials, some of which are commercially available, such as restricted access materials, carbon adsorbents, molecularly imprinted polymers, ionic liquids, microporous monoliths, sol–gel prepared coatings and dual phase material. This has greatly helped in widening the applications of SBSE for pesticide analysis in fruits and vegetables and other matrices. The introduction of a thermal desorption unit which eliminates the reconstitution step of the stir bar in organic solvents before instrumental analysis has helped to automate the extraction method online with gas chromatography. This paper reviews the use of SBSE in pesticide residues analysis in fruits and vegetables, with a view on sample preparation steps, method optimization and validation of analytical figures of merit.

Keywords

Gas chromatography Mass spectrometry Stir bar sorptive extraction  Pesticide residues Fruits Vegetables 

Notes

Acknowledgments

The authors wish to thank the University of Malaya Research Management Centre for supporting this research work with IPPP Grant (PV009/2011A) and UMRG Grant (RG227/12AFR). We are also grateful to Elsevier® for permission for the use of figure in this review.

References

  1. 1.
    Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62(19):2145–2148CrossRefGoogle Scholar
  2. 2.
    Bojko B, Cudjoe E, Gómez-Ríos GA, Gorynski K, Jiang R, Reyes-Garcés N, Risticevic S, Silva ÉAS, Togunde O, Vuckovic D, Pawliszyn J (2012) SPME: quo vadis? Anal Chim Acta 750:132–151CrossRefGoogle Scholar
  3. 3.
    Pawliszyn J (1997) Solid phase microextraction: theory and practice. VCH, New YorkGoogle Scholar
  4. 4.
    Pawliszyn J (2012) Theory of solid-phase microextraction. In: Pawliszyn J (ed) Handbook of solid phase microextraction. Elsevier, USAGoogle Scholar
  5. 5.
    Beceiro-González E, González-Castro MJ, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D (2012) Analytical methodology for the determination of organochlorine pesticides in vegetation. J Assos Off Anal Chem Int 95(5):1291–1310Google Scholar
  6. 6.
    Baltussen E, Cramers CA, Sandra PJF (2002) Sorptive sample preparation: a review. Anal Bioanal Chem 373(1–2):3–22Google Scholar
  7. 7.
    Ridgway K, Lalljie SPD, Smith RM (2007) Sample preparation techniques for the determination of trace residues and contaminants in foods. J Chromatogr A 1153(1–2):36–53CrossRefGoogle Scholar
  8. 8.
    Kataoka H (2010) Recent developments and applications of microextraction techniques in drug analysis. Anal Bioanal Chem 396(1):339–364CrossRefGoogle Scholar
  9. 9.
    Baltussen E, Sandra P, David F, Cramers C (1999) Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J Microcolumn 10:737–747CrossRefGoogle Scholar
  10. 10.
    Tankiewicz M, Fenik J, Biziuk M (2011) Solventless and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: a review. Talanta 86(1):8–22CrossRefGoogle Scholar
  11. 11.
    Kawaguchi M, Ito R, Saito K, Nakazawa H (2006) Novel stir bar sorptive extraction methods for environmental and biomedical analysis. J Pharm Biomed Anal 40(3):500–508CrossRefGoogle Scholar
  12. 12.
    Prieto A, Basauri O, Rodil R, Usobiaga A, Fernández LA, Etxebarria N, Zuloaga O (2010) Stir-bar sorptive extraction: a view on method optimisation, novel applications, limitations and potential solutions. J Chromatogr A 1217(16):2642–2666CrossRefGoogle Scholar
  13. 13.
    Hyötyläinen T, Riekkola ML (2008) Sorbent- and liquid-phase microextraction techniques and membrane-assisted extraction in combination with gas chromatographic analysis: a review. Anal Chim Acta 614(1):27–37CrossRefGoogle Scholar
  14. 14.
    Sánchez-Rojas F, Bosch-Ojeda C, Cano-Pavón JM (2009) A review of stir bar sorptive extraction. Chromatogr 69(SUPPL. 1):S79–S94CrossRefGoogle Scholar
  15. 15.
    Nogueira JMF (2012) Novel sorption-based methodologies for static microextraction analysis: a review on SBSE and related techniques. Anal Chim Acta 757:1–10CrossRefGoogle Scholar
  16. 16.
    Blasco C, Font G, Picó Y (2002) Comparison of microextraction procedures to determine pesticides in oranges by liquid chromatography-mass spectrometry. J Chromatogr A 970(1–2):201–212CrossRefGoogle Scholar
  17. 17.
    Chen Y, Guo Z, Wang X, Qiu C (2008) Sample preparation. J Chromatogr A 1184(1–2):191–219CrossRefGoogle Scholar
  18. 18.
    Wan Ibrahim WA, Wan Ismail WN, Abdul Keyon AS, Sanagi MM (2011) Preparation and characterization of a new sol-gel hybrid based tetraethoxysilane-polydimethylsiloxane as a stir bar extraction sorbent materials. J Sol-Gel Sci Technol 58(3):602–611CrossRefGoogle Scholar
  19. 19.
    Bicchi C, Cordero C, Liberto E, Rubiolo P, Sgorbini B, David F, Sandra P (2005) Dual-phase twisters: A new approach to headspace sorptive extraction and stir bar sorptive extraction. J Chromatogr A 1094(1–2):9–16CrossRefGoogle Scholar
  20. 20.
    Bicchi C, Cordero C, Liberto E, Sgorbini B, David F, Sandra P, Rubiolo P (2007) Influence of polydimethylsiloxane outer coating and packing material on analyte recovery in dual-phase headspace sorptive extraction. J Chromatogr A 1164(1–2):33–39CrossRefGoogle Scholar
  21. 21.
    Zhu X, Cai J, Yang J, Su Q, Gao Y (2006) Films coated with molecular imprinted polymers for the selective stir bar sorption extraction of monocrotophos. J Chromatogr A 1131(1–2):37–44CrossRefGoogle Scholar
  22. 22.
    Liu W, Hu Y, Zhao J, Xu Y, Guan Y (2005) Determination of organophosphorus pesticides in cucumber and potato by stir bar sorptive extraction. J Chromatogr A 1095(1–2):1–7CrossRefGoogle Scholar
  23. 23.
    Liu W, Wang H, Guan Y (2004) Preparation of stir bars for sorptive extraction using sol-gel technology. J Chromatogr A 1045(1–2):15–22CrossRefGoogle Scholar
  24. 24.
    Lambert JP, Mullett WM, Kwong E, Lubda D (2005) Stir bar sorptive extraction based on restricted access material for the direct extraction of caffeine and metabolites in biological fluids. J Chromatogr A 1075(1–2):43–49CrossRefGoogle Scholar
  25. 25.
    Fontanals N, Marcé RM, Borrull F (2007) New materials in sorptive extraction techniques for polar compounds. J Chromatogr A 1152(1–2):14–31CrossRefGoogle Scholar
  26. 26.
    Hu Y, Li J, Hu Y, Li G (2010) Development of selective and chemically stable coating for stir bar sorptive extraction by molecularly imprinted technique. Talanta 82(2):464–470CrossRefGoogle Scholar
  27. 27.
    Turiel E, Martín-Esteban A (2010) Molecularly imprinted polymers for sample preparation: a review. Anal Chim Acta 668(2):87–99CrossRefGoogle Scholar
  28. 28.
    Hu C, He M, Chen B, Hu B (2013) A sol-gel polydimethylsiloxane/polythiophene coated stir bar sorptive extraction combined with gas chromatography-flame photometric detection for the determination of organophosphorus pesticides in environmental water samples. J Chromatogr A 1275:25–31CrossRefGoogle Scholar
  29. 29.
    Martín-Esteban A (2013) Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. TrAC: Trends Anal ChemGoogle Scholar
  30. 30.
    Montes R, Rodríguez I, Ramil M, Rubí E, Cela R (2009) Solid-phase extraction followed by dispersive liquid–liquid microextraction for the sensitive determination of selected fungicides in wine. J Chromatogr A 1216(29):5459–5466CrossRefGoogle Scholar
  31. 31.
    Turner C (2006) Overview of modern extraction techniques for food and agricultural samples. In: Turner C (ed) modern extraction techniques, vol 926. ACS, Washington DCCrossRefGoogle Scholar
  32. 32.
    Urbanowicz M, Zabiegała B, Namieśnik J (2011) Solventless sample preparation techniques based on solid- and vapour-phase extraction. Anal Bioanal Chem 399(1):277–300CrossRefGoogle Scholar
  33. 33.
    David F, Sandra P (2007) Stir bar sorptive extraction for trace analysis. J Chromatogr A 1152(1–2):54–69CrossRefGoogle Scholar
  34. 34.
    Barriada-Pereira M, Serôdio P, González-Castro MJ, Nogueira JMF (2010) Determination of organochlorine pesticides in vegetable matrices by stir bar sorptive extraction with liquid desorption and large volume injection-gas chromatography-mass spectrometry towards compliance with European Union directives. J Chromatogr A 1217(1):119–126CrossRefGoogle Scholar
  35. 35.
    Ochiai N, Sasamoto K, Kanda H, Nakamura S (2006) Fast screening of pesticide multiresidues in aqueous samples by dual stir bar sorptive extraction-thermal desorption-low thermal mass gas chromatography-mass spectrometry. J Chromatogr A 1130(1):83–90CrossRefGoogle Scholar
  36. 36.
    Bicchi C, Cordero C, Rubiolo P, Sandra P (2003) Impact of water/PDMS phase ratio, volume of PDMS, and sampling time on stir bar sorptive extraction (SBSE) recovery of some pesticides with different K o/w. J Sep Sci 26(18):1650–1656CrossRefGoogle Scholar
  37. 37.
    Arthur CL, Killam LM, Buchholz KD, Pawliszyn J, Berg JR (1992) Automation and optimization of solid-phase microextraction. Anal Chem 64(17):1960–1966CrossRefGoogle Scholar
  38. 38.
    Risticevic S, Lord H, Górecki T, Arthur CL, Pawliszyn J (2010) Protocol for solid-phase microextraction method development. Nat Protoc 5(1):122–139CrossRefGoogle Scholar
  39. 39.
    Kudlejova L, Risticevic S, Vuckovic D (2012) Solid-phase microextraction method development. In: Pawliszyn J (ed) Handbook of solid phase microextration. Elsevier, WalthamGoogle Scholar
  40. 40.
    León VM, Álvarez B, Cobollo MA, Muñoz S, Valor I (2003) Analysis of 35 priority semivolatile compounds in water by stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry: I method optimisation. J Chromatogr A 999(1–2):91–101CrossRefGoogle Scholar
  41. 41.
    Prieto A, Zuloaga O, Usobiaga A, Etxebarria N, Fernández LA (2008) Use of experimental design in the optimisation of stir bar sorptive extraction followed by thermal desorption for the determination of brominated flame retardants in water samples. Anal Bioanal Chem 390(2):739–748CrossRefGoogle Scholar
  42. 42.
    Guan W, Wang Y, Xu F, Guan Y (2008) Poly(phthalazine ether sulfone ketone) as novel stationary phase for stir bar sorptive extraction of organochlorine compounds and organophosphorus pesticides. J Chromatogr A 1177(1):28–35CrossRefGoogle Scholar
  43. 43.
    Popp P, Keil P, Montero L, Rückert M (2005) Optimized method for the determination of 25 polychlorinated biphenyls in water samples using stir bar sorptive extraction followed by thermodesorption-gas chromatography/mass spectrometry. J Chromatogr A 1071(1–2):155–162CrossRefGoogle Scholar
  44. 44.
    Portugal FCM, Pinto ML, Nogueira JMF (2008) Optimization of polyurethane foams for enhanced stir bar sorptive extraction of triazinic herbicides in water matrices. Talanta 77(2):765–773CrossRefGoogle Scholar
  45. 45.
    Portugal FCM, Pinto ML, Pires J, Nogueira JMF (2010) Potentialities of polyurethane foams for trace level analysis of triazinic metabolites in water matrices by stir bar sorptive extraction. J Chromatogr A 1217(23):3707–3710CrossRefGoogle Scholar
  46. 46.
    Giordano A, Fernández-Franzón M, Ruiz MJ, Font G, Picó Y (2009) Pesticide residue determination in surface waters by stir bar sorptive extraction and liquid chromatography/tandem mass spectrometry. Anal Bioanal Chem 393(6–7):1733–1743CrossRefGoogle Scholar
  47. 47.
    Quintana JB, Rodil R, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D (2007) Multiresidue analysis of acidic and polar organic contaminants in water samples by stir-bar sorptive extraction-liquid desorption-gas chromatography-mass spectrometry. J Chromatogr A 1174(1–2):27–39CrossRefGoogle Scholar
  48. 48.
    Ochiai N, Sasamoto K, Kanda H, Yamagami T, David F, Tienpont B, Sandra P (2005) Optimization of a multi-residue screening method for the determination of 85 pesticides in selected food matrices by stir bar sorptive extraction and thermal desorption GC–MS. J Sep Sci 28(9–10):1083–1092CrossRefGoogle Scholar
  49. 49.
    Serôdio P, Nogueira JMF (2005) Development of a stir-bar-sorptive extraction-liquid desorption-large-volume injection capillary gas chromatographic-mass spectrometric method for pyrethroid pesticides in water samples. Anal Bioanal Chem 382(4):1141–1151CrossRefGoogle Scholar
  50. 50.
    Sandra P, Tienpont B, David F (2003) Multi-residue screening of pesticides in vegetables, fruits and baby food by stir bar sorptive extraction-thermal desorption-capillary gas chromatography-mass spectrometry. J Chromatogr A 1000(1–2):299–309CrossRefGoogle Scholar
  51. 51.
    Juan-García A, Mañes J, Font G, Picó Y (2004) Evaluation of solid-phase extraction and stir-bar sorptive extraction for the determination of fungicide residues at low-μg kg−1 levels in grapes by liquid chromatography-mass spectrometry. J Chromatogr A 1050(2):119–127CrossRefGoogle Scholar
  52. 52.
    Juan-García A, Picó Y, Font G (2005) Capillary electrophoresis for analyzing pesticides in fruits and vegetables using solid-phase extraction and stir-bar sorptive extraction. J Chromatogr A 1073(1–2):229–236CrossRefGoogle Scholar
  53. 53.
    Wennrich L, Popp P, Breuste J (2001) Determination of organochlorine pesticides and chlorobenzenes in fruit and vegetables using subcritical water extraction combined with sorptive enrichment and CGC-MS. Chromatogr 53:S380–S386 SPEC. ISSCrossRefGoogle Scholar
  54. 54.
    Kende A, Csizmazia Z, Rikker T, Angyal V, Torkos K (2006) Combination of stir bar sorptive extraction-retention time locked gas chromatography-mass spectrometry and automated mass spectral deconvolution for pesticide identification in fruits and vegetables. Microchem J 84(1–2):63–69CrossRefGoogle Scholar
  55. 55.
    Viñas P, Aguinaga N, Campillo N, Hernández-Córdoba M (2008) Comparison of stir bar sorptive extraction and membrane-assisted solvent extraction for the ultra-performance liquid chromatographic determination of oxazole fungicide residues in wines and juices. J Chromatogr A 1194(2):178–183CrossRefGoogle Scholar
  56. 56.
    Campillo N, Viñas P, Aguinaga N, Férez G, Hernández-Córdoba M (2010) Stir bar sorptive extraction coupled to liquid chromatography for the analysis of strobilurin fungicides in fruit samples. J Chromatogr A 1217(27):4529–4534CrossRefGoogle Scholar
  57. 57.
    Lavagnini I, Urbani A, Magno F (2011) Overall calibration procedure via a statistically based matrix-comprehensive approach in the stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry analysis of pesticide residues in fruit-based soft drinks. Talanta 83(5):1754–1762CrossRefGoogle Scholar
  58. 58.
    Hogendoorn E, Van Zoonen P (2000) Recent and future developments of liquid chromatography in pesticide trace analysis. J Chromatogr A 892(1–2):435–453CrossRefGoogle Scholar
  59. 59.
    Hogendoorn EA, Dijkman E, Baumann B, Hidalgo C, Sancho JV, Hernandez F (1999) Strategies in using analytical restricted access media columns for the removal of humic acid interferences in the trace analysis of acidic herbicides in water samples by coupled column liquid chromatography with uv detection. Anal Chem 71(6):1111–1118CrossRefGoogle Scholar
  60. 60.
    Simplício AL, Vilas Boas L (1999) Validation of a solid-phase microextraction method for the determination of organophosphorus pesticides in fruits and fruit juice. J Chromatogr A 833(1):35–42CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations