, Volume 76, Issue 17–18, pp 1067–1078

Comparisons of Five Algorithms for Chromatogram Alignment

  • Wei Jiang
  • Zhi-Min Zhang
  • YongHuan Yun
  • De-Jian Zhan
  • Yi-Bao Zheng
  • Yi-Zeng Liang
  • Zhen Yu Yang
  • Ling Yu


In this study, five frequently used warping algorithms [correlation optimized warping (COW), recursive alignment by fast Fourier transform (RAFFT), dynamic time warping, variable penalty dynamic warping, and parametric time warping (PTW)] are compared for their ability to align chromatograms with retention time shifts. Five datasets consisting of chromatograms of herbal medicines analyzed by high-performance liquid chromatography (HPLC) (Kudzuvine Root, White Paeony Root, Rehmannia Root, Ligusticum wallichii, Scutellaria baicalensis) are chosen to test these five alignment algorithms. The comparison shows all those five methods have misalignments with different degrees, but the correlations of the aligned data sets are all improved, especially for the data sets that are aligned by segment-wise: COW and RAFFT. After the comprehensive comparison, RAFFT wins the highest score, and then COW follows, whereas PTW is not preferable to align HPLC.


Alignment Warping Herbal Comprehensive comparison 


  1. 1.
    Clifford D, Stone G, Montoliu I, Rezzi S, Guy P, Martin Fo P, Bruce S, Kochhar S (2009) Anal Chem 81:1000–1007CrossRefGoogle Scholar
  2. 2.
    Eilers PHC (2003) Anal Chem 76:404–411CrossRefGoogle Scholar
  3. 3.
    Ramaker H-J, van Sprang ENM, Westerhuis JA, Smilde AK (2003) Anal Chim Acta 498:133–153CrossRefGoogle Scholar
  4. 4.
    Tomasi G, van den Berg F, Andersson C (2004) J Chemom 18:231–241CrossRefGoogle Scholar
  5. 5.
    Wong JWH, Durante C, Cartwright HM (2005) Anal Chem 77:5655–5661CrossRefGoogle Scholar
  6. 6.
    Nielsen N-PV, Carstensen JM, Smedsgaard J (1998) J Chromatogr A 805:17–35CrossRefGoogle Scholar
  7. 7.
    Savorani F, Tomasi G, Engelsen SB (2010) J Magn Reson 202:190–202CrossRefGoogle Scholar
  8. 8.
    Sakoe H, Chiba S (1978) IEEE Transactions on Acoustics, Speech and Signal Processing 26:43–49Google Scholar
  9. 9.
    Salvador S, Chan P (2007) Intell Data Anal 11:561–580Google Scholar
  10. 10.
    Yao W, Yin X, Hu Y (2007) J Chromatogr A 1160:254–262CrossRefGoogle Scholar
  11. 11.
    He QP, Jin W (2010) Comparison of a new spectrum alignment algorithm with other methods. In: American Control Conference (ACC), 2010, pp 1260–1265Google Scholar
  12. 12.
    Forshed J, Schuppe-Koistinen I, Jacobsson SP (2003) Anal Chim Acta 487:189–199CrossRefGoogle Scholar
  13. 13.
    Zhang Z-M, Liang Y-Z, Lu H-M, Tan B–B, Xu X-N, Ferro M (2012) J Chromatogr A 1223:93–106CrossRefGoogle Scholar
  14. 14.
    Zhang Z-M, Chen S, Liang Y-Z (2011) Talanta 83:1108–1117CrossRefGoogle Scholar
  15. 15.
    Pravdova V, Walczak B, Massart DL (2002) Anal Chim Acta 456:77–92CrossRefGoogle Scholar
  16. 16.
    van Nederkassel AM, Daszykowski M, Eilers PHC, Heyden YV (2006) J Chromatogr A 1118:199–210CrossRefGoogle Scholar
  17. 17.
    Giskeødegård GF, Bloemberg TG, Postma G, Sitter B, Tessem M-B, Gribbestad IS, Bathen TF, Buydens LMC (2010) Anal Chim Acta 683:1–11CrossRefGoogle Scholar
  18. 18.
    Struck W, Wiczling P, Waszczuk-Jankowska M, Kaliszan R, Markuszewski MJ (2012) J Chromatogr A 1256:150–159CrossRefGoogle Scholar
  19. 19.
    MacKinnon N, Ge W, Khan AP, Somashekar BS, Tripathi P, Siddiqui J, Wei JT, Chinnaiyan AM, Rajendiran TM, Ramamoorthy A (2012) Anal Chem 84:5372–5379CrossRefGoogle Scholar
  20. 20.
    Forshed J, Torgrip RJO, Åberg KM, Karlberg B, Lindberg J, Jacobsson SP (2005) J Pharm Biomed Anal 38:824–832CrossRefGoogle Scholar
  21. 21.
    Héberger K (2010) TrAC Trends Anal Chem 29:101–109CrossRefGoogle Scholar
  22. 22.
    Héberger K, Kollár-Hunek K (2011) J Chemom 25:151–158CrossRefGoogle Scholar
  23. 23.
    Zheng Y-B, Zhang Z-M, Liang Y-Z, Zhan D-J, Huang J-H, Yun Y-H, Xie H-L (2013) J Chromatogr A 1286:175–182CrossRefGoogle Scholar
  24. 24.
    Li Z, Wang J–J, Huang J, Zhang Z-M, Lu H-M, Zheng Y-B, Zhan D-J, Liang Y-Z (2013) J Sep Sci 36:1677–1684CrossRefGoogle Scholar
  25. 25.
    Skov T, van den Berg F, Tomasi G, Bro R (2006) J Chemom 20:484–497CrossRefGoogle Scholar
  26. 26.
    van Nederkassel AM, Xu CJ, Lancelin P, Sarraf M, MacKenzie DA, Walton NJ, Bensaid F, Lees M, Martin GJ, Desmurs JR, Massart DL, Smeyers-Verbeke J, Vander Heyden Y (2006) J Chromatogr A 1120:291–298CrossRefGoogle Scholar
  27. 27.
    Zhang D, Huang X, Regnier FE, Zhang M (2008) Anal Chem 80:2664–2671CrossRefGoogle Scholar
  28. 28.
    Suits F, Lepre J, Du P, Bischoff R, Horvatovich P (2008) Anal Chem 80:3095–3104CrossRefGoogle Scholar
  29. 29.
    Bergland GD (1969) IEEE Spect 6:41–52CrossRefGoogle Scholar
  30. 30.
    Welch P (1967) IEEE Transactions on Audio and Electroacoustics 15:70–73Google Scholar
  31. 31.
    Keogh EJ, Pazzani MJ (2000) Scaling up dynamic time warping for data mining applications. In: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining ACM, Boston, Massachusetts, USA, pp 285–289Google Scholar
  32. 32.
    Kongming Wang TG (1997) Ann Stat 25:1251–1276CrossRefGoogle Scholar
  33. 33.
    Clifford D, Stone G (2010) J Stat Softw 47.
  34. 34.
    Bloemberg TG, Gerretzen J, Wouters HJP, Gloerich J, van Dael M, Wessels HJCT, van den Heuvel LP, Eilers PHC, Buydens LMC, Wehrens R (2010) Chemom Intell Lab Syst 104:65–74. Google Scholar
  35. 35.
    Nelder JA, Mead R (1965) Comput J 7:308–313. doi:10.1093/comjnl.7.4.308 CrossRefGoogle Scholar
  36. 36.
    Skov FvdB T, Tomasi G, Bro R (2006) J Chemometr 20:484Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wei Jiang
    • 1
  • Zhi-Min Zhang
    • 1
  • YongHuan Yun
    • 1
  • De-Jian Zhan
    • 1
  • Yi-Bao Zheng
    • 1
  • Yi-Zeng Liang
    • 1
  • Zhen Yu Yang
    • 2
  • Ling Yu
    • 2
  1. 1.College of Chemistry and Chemical Engineering, Research Center of Modernization of Chinese MedicinesCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Shanghai Tobacco Group Co., LtdShanghaiPeople’s Republic of China

Personalised recommendations