Advertisement

Chromatographia

, Volume 76, Issue 11–12, pp 581–589 | Cite as

Fabrication of Bonded Monolithic Porous Layer Open Tubular (monoPLOT) Columns in Wide Bore Capillary by Laminar Flow Thermal Initiation

  • David A. CollinsEmail author
  • Ekaterina P. Nesterenko
  • Dermot Brabazon
  • Brett Paull
Original

Abstract

A novel scalable procedure for the thermally initiated polymerisation of bonded monolithic porous layers of controlled thickness within open tubular fused silica capillaries (monoPLOT columns) is presented. Porous polymer layers of either polystyrene-divinylbenzene or butyl methacrylate-ethylene dimethacrylate, of variable thickness and morphology were polymerised inside fused silica capillaries utilising combined thermal initiation and laminar flow of the polymerisation mixture. The procedure enables the production through thermal initiation of monoPLOT columns of varying length, internal diameter, user defined morphology and layer thickness for potential use in both liquid and gas chromatography. The morphology and thickness of the bonded polymer layer on the capillary wall is strongly dependent on the laminar flow properties of the polymerisation mixture and the changing shear stress within the fluid across the inner diameter of the open capillary. Owing to the highly controlled rate of polymerisation and its dependence on fluid shear stress at the capillary wall, the procedure was demonstrably scalable, as illustrated by the polymerisation of identical layers within different capillary diameters.

Keywords

Laminar flow polymerisation Thermally initiated polymerisation monoPLOT columns 

Notes

Acknowledgments

The authors would like to acknowledge financial support from Science Foundation Ireland for the Irish Separation Science Cluster award (Grant No. 08/SRC/B1412).

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10337_2013_2447_MOESM1_ESM.pdf (758 kb)
Supplementary material 1 (PDF 795 kb)

References

  1. 1.
    Golay MJE (1958) Gas chromatography. Academic Press, New YorkGoogle Scholar
  2. 2.
    de Zeeuw J (2011) LC-GC Eur 24:38–45Google Scholar
  3. 3.
    Collins D, Nesterenko E, Brabazon D, Paull B (2012) Anal Chem 84:3465–3472CrossRefGoogle Scholar
  4. 4.
    Nischang I, Brueggemann O, Svec F (2010) Anal Bioanal Chem 397:953–960CrossRefGoogle Scholar
  5. 5.
    Luo Q, Rejtar T, Wu SL, Karger B (2009) J Chromatogr A 1216:1223–1231CrossRefGoogle Scholar
  6. 6.
    Huang X, Zhang J, Horvath C (1999) J Chromatogr A 858:91–101CrossRefGoogle Scholar
  7. 7.
    Tan ZJ, Remcho VT (1998) J Microcolumn Sep 10(1):99–105CrossRefGoogle Scholar
  8. 8.
    Tan ZJ, Remcho VT (1997) Anal Chem 69(4):581–586CrossRefGoogle Scholar
  9. 9.
    Chuang SC, Chang CY, Liu CY (2004) J Chromatogr A 1044:229–236CrossRefGoogle Scholar
  10. 10.
    Shen TC (1992) J Chromatogr Sci 30(6):239–240CrossRefGoogle Scholar
  11. 11.
    Banu I, Bildea S, Bozga G, Puaux JP (2009) Stud Univ Babes-Bolyai Chem 54(1):227–241Google Scholar
  12. 12.
    Castro JM, Lipshitz SD, Macosko CW (1982) AIChE J 28(6):973–980CrossRefGoogle Scholar
  13. 13.
    Wehner JF (1978) Chem React Eng Houst. doi: 10.1021/bk-1978-0065.ch012 Google Scholar
  14. 14.
    Nesterenko EP, Nesterenko PN, Connolly D, Lacroix F, Paull B (2010) J Chromatogr A 1217:2138–2146CrossRefGoogle Scholar
  15. 15.
    Collins DA, Nesterenko EP, Connolly D, Vasquez M, Macka M, Brabazon D, Paull B (2011) Anal Chem 83(11):4307–4313CrossRefGoogle Scholar
  16. 16.
    Cifuentes A, Diez-Masa JC, Fritz J et al (1998) Anal Chem 70(16):3458–3462CrossRefGoogle Scholar
  17. 17.
    Fox R, McDonald A, Pritchard P (2009) Introduction to fluid mechanics, 7th edn. Wiley, New YorkGoogle Scholar
  18. 18.
    http://www.polymicro.com. Accessed November 2012
  19. 19.
    Odian G (1981) Principles of polymerization, 2nd edn. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • David A. Collins
    • 1
    Email author
  • Ekaterina P. Nesterenko
    • 1
  • Dermot Brabazon
    • 1
  • Brett Paull
    • 1
    • 2
  1. 1.Irish Separation Science Cluster, Dublin City UniversityDublin 9Ireland
  2. 2.Australian Centre for Research on Separation Science, School of Chemical SciencesUniversity of TasmaniaHobartAustralia

Personalised recommendations