, Volume 76, Issue 7–8, pp 345–353 | Cite as

Study of Interaction between Metallothionein and CdTe Quantum Dots

  • Sylvie Skalickova
  • Ondrej Zitka
  • Lukas Nejdl
  • Sona Krizkova
  • Jiri Sochor
  • Libor Janu
  • Marketa Ryvolova
  • David Hynek
  • Jarmila Zidkova
  • Vaclav Zidek
  • Vojtech Adam
  • Rene KizekEmail author


Quantum dots (QDs) belong to a new class of fluorescent agent for biochemical, medicinal or other purposes. However, QDs based on cadmium or other metals can be risky for an organism. As one of the mechanism how to detoxify cadmium-based QDs expression of metallothioneins (MT) can be considered. Due to high affinity of metallothionein to cadmium(II) ions, we attempted to develop an approach for studying of possible interaction with QDs. We prepared QDs with CdTe core and studied the interaction with MT, which we isolated from livers of Cd-administered rabbits. To study the interaction, we used the mixture of both components MT (3.6 μM): CdTe QDs (0, 0.34, 0.68, 1.02, 1.36, 1.7, 2.04 and 2.47 μM). The mixtures were studied by spectrophotometry within the range from 200 to 750 nm with detected maxima at 260 and 505 nm. Same mixtures were also analysed by differential pulse voltammetry Brdicka reaction, which supported data from spectrophotometry. Subsequently, we used fast protein liquid chromatography for purification of protein–quantum dot conjugates. We obtained the different chromatograms for (1) Apo MT, (2) CdTe QDs and (3) MT–QD complex. We also collected the fractions and subsequently analysed them on the content of Cd and MT, which confirmed the formation of CdTe QDs–MT complex.


Fast protein liquid chromatography Brdicka reaction Differential pulse voltammetry Fluorimetry Spectrophotometry Separation of quantum dots ApoMT 



Financial support from the following projects IGA TP 6/2012, NANIMEL GACR 102/08/1546, CEITEC CZ.1.05/1.1.00/02.0068 and IAA600110902 is highly acknowledged. The authors thank Pavel Kopel for the technical support.


  1. 1.
    Gao XH, Yang LL, Petros JA, Marshal FF, Simons JW, Nie SM (2005) Curr Opin Biotechnol 16:63–72CrossRefGoogle Scholar
  2. 2.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538–544CrossRefGoogle Scholar
  3. 3.
    Wang F, Tan WB, Zhang Y, Fan XP, Wang MQ (2006) Nanotechnology 17:R1–R13CrossRefGoogle Scholar
  4. 4.
    Jaiswal JK, Goldman ER, Mattoussi H, Simon SM (2004) Nat Methods 1:73–78CrossRefGoogle Scholar
  5. 5.
    Chen FQ, Gerion D (2004) Nano Lett 4:1827–1832CrossRefGoogle Scholar
  6. 6.
    Wang QS, Liu PF, Zhou XL, Zhang XL, Fang TT, Liu P, Min XM, Li X (2012) J Photochem Photobiol A Chem 230:23–30CrossRefGoogle Scholar
  7. 7.
    Derfus AM, Chan WCW, Bhatia SN (2004) Nano Lett 4:11–18CrossRefGoogle Scholar
  8. 8.
    Chen N, He Y, Su YY, Li XM, Huang Q, Wang HF, Zhang XZ, Tai RZ, Fan CH (2012) Biomaterials 33:1238–1244CrossRefGoogle Scholar
  9. 9.
    Huang DP, Geng F, Liu YH, Wang XQ, Jiao JJ, Yu L (2011) Colloid Surf A Physicochem Eng Asp 392:191–197CrossRefGoogle Scholar
  10. 10.
    Adam V, Krizkova S, Zitka O, Trnkova L, Petrlova J, Beklova M, Kizek R (2007) Electroanalysis 19:339–347CrossRefGoogle Scholar
  11. 11.
    Cosson RP, Amiardtriquet C, Amiard JC (1991) Water Air Soil Pollut 57–8:555–567CrossRefGoogle Scholar
  12. 12.
    Ghoshal K, Jacob ST (2001) Regulation of metallothionein gene expression. In: Progress in Nucleic Acid Research and Molecular Biology Academic Press Inc, San Diego, pp 357–384Google Scholar
  13. 13.
    Gunes C, Heuchel R, Georgiev O, Muller KH, Lichtlen P, Bluthmann H, Marino S, Aguzzi A, Schaffner W (1998) EMBO J 17:2846–2854CrossRefGoogle Scholar
  14. 14.
    Klassen RB, Crenshaw K, Kozyraki R, Verroust PJ, Tio L, Atrian S, Allen PL, Hammond TG et al (2004) Am J Physiol Renal Physiol 287:F393–F403CrossRefGoogle Scholar
  15. 15.
    Valko M, Morris H, Cronin MTD (2005) Curr Med Chem 12:1161–1208CrossRefGoogle Scholar
  16. 16.
    Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Cell Mol Life Sci 59:627–647CrossRefGoogle Scholar
  17. 17.
    Bell SG, Vallee BL (2009) ChemBioChem 10:55–62CrossRefGoogle Scholar
  18. 18.
    Adam V, Fabrik I, Eckschlager T, Stiborova M, Trnkova L, Kizek R (2010) TRAC Trends Anal Chem 29:409–418CrossRefGoogle Scholar
  19. 19.
    Ryvolova M, Krizkova S, Adam V, Beklova M, Trnkova L, Hubalek J, Kizek R (2011) Curr Anal Chem 7:243–261Google Scholar
  20. 20.
    Kabzinski AKM (1993) Chromatographia 35:439–447CrossRefGoogle Scholar
  21. 21.
    Bordin G, Raposo FC, Rodriguez AR (1994) Chromatographia 39:146–154CrossRefGoogle Scholar
  22. 22.
    van Vyncht G, Bordin G, Rodriguez AR (2000) Chromatographia 52:745–752CrossRefGoogle Scholar
  23. 23.
    Krizkova S, Masarik M, Eckschlager T, Adam V, Kizek R (2010) J Chromatogr A 1217:7966–7971CrossRefGoogle Scholar
  24. 24.
    Virtanen V, Bordin G, Rodriguez AR (1998) Chromatographia 48:637–642CrossRefGoogle Scholar
  25. 25.
    Virtanen V, Bordin G (1999) Chromatographia 49:S83–S86CrossRefGoogle Scholar
  26. 26.
    Ryvolova M, Adam V, Kizek R (2012) J Chromatogr A 1226:31–42CrossRefGoogle Scholar
  27. 27.
    Olafson RW, Olsson PE (1991) Method Enzymol 205:205–213CrossRefGoogle Scholar
  28. 28.
    Adam V, Petrlova J, Potesil D, Zehnalek J, Sures B, Trnkova L, Jelen F, Kizek R (2005) Electroanalysis 17:1649–1657CrossRefGoogle Scholar
  29. 29.
    Petrlova J, Potesil D, Mikelova R, Blastik O, Adam V, Trnkova L, Jelen F, Prusa R, Kukacka J, Kizek R (2006) Electrochim Acta 51:5112–5119CrossRefGoogle Scholar
  30. 30.
    Adam V, Blastik O, Krizkova S, Lubal P, Kukacka J, Prusa R, Kizek R (2008) Chem Listy 102:51–58Google Scholar
  31. 31.
    Duan JL, Song LX, Zhan JH (2009) Nano Res 2:61–68CrossRefGoogle Scholar
  32. 32.
    McGreavy C, Andrade JS, Rajagopal K (1990) Chromatographia 30:639–644CrossRefGoogle Scholar
  33. 33.
    Lemieux L, Piot JM, Guillochon D, Amiot J (1991) Chromatographia 32:499–504CrossRefGoogle Scholar
  34. 34.
    Shalliker RA, Kavanagh PE, Russell IM, Hawthorne DG (1992) Chromatographia 33:427–433CrossRefGoogle Scholar
  35. 35.
    Demuynck S, Grumiaux F, Mottier V, Schikorski D, Lemiere S, Lepretre A (2006) Comp Biochem Physiol C Toxicol Pharmacol 144:34–46CrossRefGoogle Scholar
  36. 36.
    Wong C, Sridhara S, Bardwell JCA, Jakob U (2000) Biotechniques 28:426–432Google Scholar
  37. 37.
    Krizkova S, Adam V, Eckschlager T, Kizek R (2009) Electrophoresis 30:3726–3735CrossRefGoogle Scholar
  38. 38.
    Huska D, Zitka O, Krystofova O, Adam V, Babula P, Zehnalek J, Bartusek K, Beklova M, Havel L, Kizek R (2010) Int J Electrochem Sci 5:1535–1549Google Scholar
  39. 39.
    Hynek D, Krejcova L, Sochor J, Cernei N, Kynicky J, Adam V, Trnkova L, Hubalek J, Vrba R, Kizek R (2012) Int J Electrochem Sci 7:1802–1819Google Scholar
  40. 40.
    Kleckerova A, Sobrova P, Krystofova O, Sochor J, Zitka O, Babula P, Adam V, Docekalova H, Kizek R (2011) Int J Electrochem Sci 6:6011–6031Google Scholar
  41. 41.
    Krystofova O, Trnkova L, Adam V, Zehnalek J, Hubalek J, Babula P, Kizek R (2010) Sensors 10:5308–5328CrossRefGoogle Scholar
  42. 42.
    Sochor J, Majzlik P, Salas P, Adam V, Trnkova L, Hubalek J, Kizek R (2010) Listy Cukrov Reparske 126:414–415Google Scholar
  43. 43.
    Raspor B (2001) J Electroanal Chem 503:159–162CrossRefGoogle Scholar
  44. 44.
    Trnkova L, Kizek R, Vacek J (2002) Bioelectrochemistry 56:57–61CrossRefGoogle Scholar
  45. 45.
    Fabrik I, Krizkova S, Huska D, Adam V, Hubalek J, Trnkova L, Eckschlager T, Kukacka J, Prusa R, Kizek R (2008) Electroanalysis 20:1521–1532CrossRefGoogle Scholar
  46. 46.
    Krizkova S, Fabrik I, Adam V, Kukacka J, Prusa R, Chavis GJ, Trnkova L, Strnadel J, Horak V, Kizek R (2008) Sensors 8:3106–3122CrossRefGoogle Scholar
  47. 47.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435–446CrossRefGoogle Scholar
  48. 48.
    Zitka O, Ryvolova M, Hubalek J, Eckschlager T, Adam V, Kizek R (2012) Curr Drug Metab 13:306–320CrossRefGoogle Scholar
  49. 49.
    Drbohlavova J, Adam V, Kizek R, Hubalek J (2009) Int J Mol Sci 10:656–673CrossRefGoogle Scholar
  50. 50.
    Krejcova L, Fabrik I, Hynek D, Krizkova S, Gumulec J, Ryvolova M, Adam V, Babula P, Trnkova L, Stiborova M, Hubalek J, Masarik M, Binkova H, Eckschlager T, Kizek R (2012) Int J Electrochem Sci 7:1767–1784Google Scholar
  51. 51.
    Krizkova S, Adam V, Kizek R (2009) Electrophoresis 30:4029–4033CrossRefGoogle Scholar
  52. 52.
    Krizkova S, Ryvolova M, Gumulec J, Masarik M, Adam V, Majzlik P, Hubalek J, Provaznik I, Kizek R (2011) Electrophoresis 32:1952–1961CrossRefGoogle Scholar
  53. 53.
    Sochor J, Hynek D, Krejcova L, Fabrik I, Krizkova S, Gumulec J, Adam V, Babula P, Trnkova L, Stiborova M, Hubalek J, Masarik M, Binkova H, Eckschlager T, Kizek R (2012) Int J Electrochem Sci 7:2136–2152Google Scholar
  54. 54.
    Zitka O, Krizkova S, Huska D, Adam V, Hubalek J, Eckschlager T, Kizek R (2011) Electrophoresis 32:857–860CrossRefGoogle Scholar
  55. 55.
    Eckschlager T, Adam V, Hrabeta J, Figova K, Kizek R (2009) Curr Protein Pept Sci 10:360–375CrossRefGoogle Scholar
  56. 56.
    Krizkova S, Fabrik I, Adam V, Hrabeta J, Eckschlager T, Kizek R (2009) Bratisl Med J Bratisl Lek Listy 110:93–97Google Scholar
  57. 57.
    Babula P, Masarik M, Adam V, Eckschlager T, Stiborova M, Trnkova L, Skutkova H, Provaznik I, Hubalek J, Kizek R (2012) Metallomics 4:739–750CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sylvie Skalickova
    • 1
  • Ondrej Zitka
    • 1
    • 2
  • Lukas Nejdl
    • 1
  • Sona Krizkova
    • 1
    • 2
  • Jiri Sochor
    • 1
    • 2
  • Libor Janu
    • 1
  • Marketa Ryvolova
    • 1
    • 2
  • David Hynek
    • 1
    • 2
  • Jarmila Zidkova
    • 3
  • Vaclav Zidek
    • 3
  • Vojtech Adam
    • 1
    • 2
  • Rene Kizek
    • 1
    • 2
    Email author
  1. 1.Department of Chemistry and Biochemistry, Faculty of AgronomyMendel University in BrnoBrnoCzech Republic
  2. 2.Central European Institute of Technology, Brno University of TechnologyBrnoCzech Republic
  3. 3.Department of Biochemistry and MicrobiologyInstitute of Chemical TechnologyPragueCzech Republic

Personalised recommendations