, Volume 76, Issue 19–20, pp 1315–1325 | Cite as

Screening for Antimicrobials in Mouthwashes Using HPTLC-Bioluminescence Detection

  • Vera BaumgartnerEmail author
  • Christopher Hohl
  • Wolfgang Schwack


One of the tasks of food law enforcement authorities is to supervise the composition of cosmetics. In the case of mouthwashes, they are likely to contain (labeled or unlabeled) antimicrobial compounds. Conventional analyses, such as high-performance liquid chromatography (HPLC) and gas chromatography (GC) only shed light on a compound’s structure, but not on its biological function. In this study, we demonstrate that the task of detecting antimicrobials in mouthwashes can be streamlined using the luminescent bacterium Vibrio fischeri as a biodetector coupled with high-performance thin-layer chromatography (HPTLC) as a pre-separation method. The employment of subsequent conventional techniques could then be restricted to fractions with proven V. fischeri toxicity. Samples were separated in parallel on silica gel and amino layer HPTLC plates, developed with a solvent system containing tertiary butyl methyl ether and n-hexane and dried on a plate heater. After applying V. fischeri onto the HPTLC plate, zones of interest were extracted from a parallel plate and identified by HPLC–UV or GC-mass spectrometry. The reaction of V. fischeri to more than 40 standard substances which might be present in mouthwashes was determined. Based on this information, six commercially available mouthwashes were analyzed. The workflow proved to be viable for an effect-directed screening for antimicrobial compounds. The analysis of mouthwashes revealed that not only declared preservatives are used (sodium benzoate, cetylpyridinium chloride) but also other compounds, especially constituents of essential oils. Because their main purpose is flavoring of the mouthwash, they are summarized as “aroma” (anethole, carvone, menthol, thymol) which is in compliance with legal restrictions.


High-performance thin-layer chromatography (HPTLC) Effect-directed analysis Bioluminescence detection Vibrio fischeri Mouthwashes Antimicrobials 



We thank our colleagues at the State Laboratory Basel-City, Dr. Urs Hauri and his team for the advice and the help with HPLC–DAD, and Dr. Markus Niederer and his team for the assistance with the GC–MS. Furthermore, we thank CAMAG, especially Mr. Leuenberger, for the support concerning the HPTLC equipment. We would also like to thank Mr. Handloser (CAMAG) and Mr. Schulz (Merck Millipore/Lab Solutions, R&D Thin-layer chromatography) for the information on the properties of HPTLC layers.


  1. 1.
    IQWiG—Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen (2011) Merkblatt: Zähne und Zahnfleisch lange gesund halten. Accessed 21 Nov 2011
  2. 2.
    Stiftung Warentest (2003) Mundspüllösungen—Krieg den Keimen. Test 1:25–29Google Scholar
  3. 3.
    Barnett ML (2006) The rationale for the daily use of an antimicrobial mouthrinse. J Am Dent Assoc 137(3):16S–21SGoogle Scholar
  4. 4.
    Fey H (1985) Wörterbuch der Kosmetik. Wissenschaftliche Verlagsgesellschaft mbH Stuttgart. 2. ednGoogle Scholar
  5. 5.
    Eidgenössisches Departement des Inneren (2005) Verordnung des EDI über kosmetische Mittel (VKos) of 23 Nov 2005 (status of 1 Nov 2010)Google Scholar
  6. 6.
    Eberz G, Rast H-G, Burger K, Kreiss W, Weisemann C (1996) Bioactivity screening by chromatography-bioluminescence coupling. Chromatographia 43(1/2):5–9CrossRefGoogle Scholar
  7. 7.
    Kreiss W, Eberz G, Rast H-G, Weisemann C (2003) Method and device for detection of biologically active substances. European Patent No. EP 1359226 A2Google Scholar
  8. 8.
    Morlock G, Schwack W (2010) Hyphenations in planar chromatography. J Chromatogr A 1217(43):6600–6609CrossRefGoogle Scholar
  9. 9.
    Schulz W, Seitz W, Weiss SC, Weber WH, Böhm M, Flottmann D (2008) Use of Vibrio fischeri for screening for bioactivity in water analysis. J Planar Chromatogr—Mod TLC 21(6):427–430CrossRefGoogle Scholar
  10. 10.
    Baumgartner V, Schwack W (2010) Enhanced quantitative evaluation of the HPTLC-bioluminescence detection. J Liq Chromatogr Related Technol 33(7):980–995Google Scholar
  11. 11.
    Verbitski SM, Hickey S, Gourdin GT, Ikenouye LM (2007) Bioluminex: an effective yet simple tool for screening mixtures. CAMAG Bibliography Service 99:11–13Google Scholar
  12. 12.
    CAMAG Laboratory (2007) Biological activity of berberine containing drugs by HPTLC-Bioluminescence screening. CAMAG Laboratory Application Notes F-34Google Scholar
  13. 13.
    Baumgartner V, Hohl C, Hauri U (2009) Bioactivity-Based Analysis of Sunscreens Using the Luminescent Bacteria Vibrio fischeri. J Planar Chromatogr—Mod TLC 22(1):19–23CrossRefGoogle Scholar
  14. 14.
    Klöppel A, Grasse W, Brümmer F, Morlock GE (2008) HPTLC coupled with bioluminescence and mass spectrometry for bioactivity-based analysis of secondary metabolites in marine sponges. J Planar Chromatogr—Mod TLC 21(6):431–436CrossRefGoogle Scholar
  15. 15.
    Baumgartner V, Hohl C, Schwack W (2011) Rolling—a new application technique for luminescent bacteria on high-performance thin-layer chromatography plates. J Chromatogr A 1218:2692–2699CrossRefGoogle Scholar
  16. 16.
    Kreiss W, Eberz G, Rast H-G, Weisemann C (2002) Offenlegungsschrift DE 102 19 031 A1. Anmeldetag 29.04.2002, Offenlegungstag 20.11.2003Google Scholar
  17. 17.
    Niederer M, Bollhalder R, Hohl C (2006) Determination of fragrance allergens in cosmetics by size-exclusion chromatography followed by gas chromatography-mass spectrometry. J Chromatogr A 1132:109–116CrossRefGoogle Scholar
  18. 18.
    CAMAG Laboratory (2011) Flow Chart TLC/HPTLC method development. Accessed 24 Dec 2011
  19. 19.
    Reich E, Schibli A (2007) High-Performance Thin-Layer Chromatography for the Analysis of Medicinal Plants. Thieme, StuttgartGoogle Scholar
  20. 20.
    Bassolé IHN, Juliani HR (2012) Essential oils in combination and their antimicrobial properties. Molecules 17:3989–4006CrossRefGoogle Scholar
  21. 21.
    De M, De AK, Sen P, Banerjee AB (2002) Antimicrobial properties of star anise (Illicium verum Hook f). Phytother Res 16(1):94–95CrossRefGoogle Scholar
  22. 22.
    Işcan G, Kïrïmer N, Kürkcüoğlu M, Başer KHC, Demïrcï F (2002) Antimicrobial screening of Mentha piperita essential oils. J Agric Food Chem 50:3943–3946CrossRefGoogle Scholar
  23. 23.
    Salleh WMNHW, Ahmad F, Yen KH, Sirat HM (2011) Chemical compositions, antioxidant and antimicrobial activities of essential oils of piper caninum Blume. Int J Mol Sci 12:7720–7731CrossRefGoogle Scholar
  24. 24.
    IPCS INCHEM (1996) Vanillin (CAS: 121-33-5). Accessed 29 Mar 2012
  25. 25.
    Fitzgerald DJ, Stratford M, Gasson MJ, Ueckert J, Bos A, Narbad A (2004) Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J Appl Microbiol 97:104–113CrossRefGoogle Scholar
  26. 26.
    Russell AD (1986) Chlorhexidine: antibacterial action and bacterial resistance. Infection 14(5):212–215CrossRefGoogle Scholar
  27. 27.
    Paulus W (ed) (2005) Directory of microbicides for the protection of materials—a handbook. Springer, NewYorkGoogle Scholar
  28. 28.
    Eisenbrand G, Schreier P (eds) (1995) Römpp Lexikon Lebensmittel-Chemie. Thieme, StuttgartGoogle Scholar
  29. 29.
    Singh PP, Jha S, Irchhaiya R, Fatima A, Agarwal P (2012) A Review on phytochemical and pharmacological potential of Calamintha officinalis Moench. IJPSR 3:1001–1004Google Scholar
  30. 30.
    Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiology 88(2):308–316CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vera Baumgartner
    • 1
    Email author
  • Christopher Hohl
    • 1
  • Wolfgang Schwack
    • 2
  1. 1.Kantonales Laboratorium Basel-Stadt (State Laboratory Basel-City)BaselSwitzerland
  2. 2.Institute of Food ChemistryUniversity of HohenheimStuttgartGermany

Personalised recommendations