Advertisement

Chromatographia

, Volume 76, Issue 7–8, pp 363–373 | Cite as

Spectrometric and Chromatographic Study of Reactive Oxidants Hypochlorous and Hypobromous Acids and Their Interactions with Taurine

  • Lukas Nejdl
  • Jiri Sochor
  • Ondrej Zitka
  • Natalia Cernei
  • Branislav Ruttkay-Nedecky
  • Pavel Kopel
  • Petr Babula
  • Vojtech Adam
  • Jaromir Hubalek
  • Rene Kizek
Original

Abstract

In this study, we focused on the studying of taurine complexes with phenol and sodium hypochlorite, and of taurine with sodium hypobromite by spectrometry, reverse phase chromatography and ion-exchange chromatography. The formed complexes were studied under various conditions such as temperature (10, 20, 30, 40, 50 and 60 °C), and/or time of interaction (0, 5, 10, 15, 20, 25 and 30 min). In addition, we optimized high performance liquid chromatography coupled with UV detector for detection of taurine and its complexes with the acids. Taurine–phenol–hypochlorite complex was effectively separated under isocratic elution, mobile phase water:methanol 30:70 %, v:v, flow rate 1 mL min−1 and 55 °C. Taurine-bromamine complex was isolated under the following optimized conditions as isocratic elution, mobile phase water:methanol 85:15 % v:v, flow rate 1 mL min−1 and 55 °C. The limits of detection (3 S/N) were estimated as 1 μM for both types of complexes, i.e. for taurine. Further, we estimated recovery in one sample of urine (male 25 years), commercially achieved energy drink and tea leaves and varied from 79 to 86 %. Further, we aimed our attention at investigating the ability of the above characterized taurine and taurine complexes to scavenge reactive oxygen species. For this purpose, an ion-exchange liquid chromatography with post-column derivatization with ninhydrin and VIS detector was used. It clearly follows from the results obtained that taurine itself reacts with peroxide more intensely than in a bound form, which can be associated with the highest signal decrease. Complexes stabilized structure taurine against peroxide radicals, resulting in slower decreasing of peak heights. The most stable was taurine complexes with phenol and hypobromite.

Keywords

Reversed phase HPLC Ion-exchange chromatography Spectrophotometry Complexes Taurine Antioxidant 

Notes

Acknowledgments

Financial support from the following projects NANIMEL GA CR 102/08/1546, NANOSEMED GA AV KAN208130801 and SIX CZ.1.05/2.1.00/03.0072 is highly acknowledged. The authors wish to express their thanks to Martina Stankova for excellent technical assistance.

References

  1. 1.
    Marcinkiewicz J (2010) J Biomed Sci 17:1–5CrossRefGoogle Scholar
  2. 2.
    Thomas EL, Bozeman PM, Jefferson MM, King CC (1995) J Biol Chem 270:2906–2913CrossRefGoogle Scholar
  3. 3.
    Henderson JP, Byun J, Williams MV, Mueller DM, McCormick ML, Heinecke JW (2001) J Biol Chem 276:7867–7875CrossRefGoogle Scholar
  4. 4.
    Learn DB, Fried VA, Thomas EL (1990) J Leukoc Biol 48:174–182Google Scholar
  5. 5.
    Bella DL, Hirschberger LL, Kwon YH, Stipanuk MH (2002) Amino Acids 23:453–458CrossRefGoogle Scholar
  6. 6.
    Gurer H, Ozgunes H, Saygin E, Ercal N (2001) Arch Environ Contam Toxicol 41:397–402CrossRefGoogle Scholar
  7. 7.
    Marcinkiewicz J (2009) Pol Arch Med Wewn 119:673–675Google Scholar
  8. 8.
    Condron C, Casey RG, Kehoe S, Toomey D, Creagh T, Bouchier-Hayes DJ (2010) Urol Res 38:215–222CrossRefGoogle Scholar
  9. 9.
    Ueki I, Stipanuk MH (2009) J Nutr 139:207–214Google Scholar
  10. 10.
    Ribeiro RA, Vanzela EC, Oliveira CAM, Bonfleur ML, Boschero AC, Carneiro EM (2010) Br J Nutr 104:1148–1155CrossRefGoogle Scholar
  11. 11.
    Ghosh J, Das J, Manna P, Sil PC (2009) Toxicol Appl Pharmacol 240:73–87CrossRefGoogle Scholar
  12. 12.
    Aruoma OI, Halliwell B, Hoey BM, Butler J (1988) Biochem J 256:251–255Google Scholar
  13. 13.
    Hanna J, Chahine R, Aftimos G, Nader M, Mounayar A, Esseily F, Chamat S (2004) Exp Toxicol Pathol 56:189–194CrossRefGoogle Scholar
  14. 14.
    Srivastava S, Roy R, Singh S, Kumar P, Dalela D, Sankhwar SN, Goel A, Sonkar AA (2010) Cancer Biomark 6:11–20Google Scholar
  15. 15.
    Wu JY, Prentice H (2010) J Biomed Sci 17:1–6CrossRefGoogle Scholar
  16. 16.
    Sinha M, Manna P, Sil PC (2008) BMB Rep 41:657–663CrossRefGoogle Scholar
  17. 17.
    Hynek D, Krejcova L, Sochor J, Cernei N, Kynicky J, Adam V, Trnkova L, Hubalek J, Vrba R, Kizek R (2012) Int J Electrochem Sci 7:1802–1819Google Scholar
  18. 18.
    Zitka O, Sochor J, Cernei N, Adam V, Zehnalek J, Horna A, Hubalek J, Trnkova L, Havel L, Kizek R (2010) Lis Cukrov Repar 126:422–422Google Scholar
  19. 19.
    Chen Z, Chen B, Yao SZ (2006) Anal Chim Acta 569:169–175CrossRefGoogle Scholar
  20. 20.
    Polanuer B, Ivanov S, Sholin A (1994) J Chromatogr B Biomed Appl 656:81–85CrossRefGoogle Scholar
  21. 21.
    Waterfield CJ (1994) J Chromatogr B Biomed Appl 657:37–45CrossRefGoogle Scholar
  22. 22.
    Ferreira I, Nunes MV, Mendes E, Remiao F, Ferreira MA (1997) J Liq Chromatogr Relat Technol 20:1269–1278CrossRefGoogle Scholar
  23. 23.
    Potesil D, Petrlova J, Adam V, Vacek J, Klejdus B, Zehnalek J, Trnkova L, Havel L, Kizek R (2005) J Chromatogr A 1084:134–144CrossRefGoogle Scholar
  24. 24.
    Petrlova J, Mikelova R, Stejskal K, Kleckerova A, Zitka O, Petrek J, Havel L, Zehnalek J, Adam V, Trnkova L, Kizek R (2006) J Sep Sci 29:1166–1173CrossRefGoogle Scholar
  25. 25.
    Stocchi V, Palma F, Piccoli G, Biagiarelli B, Cucchiarini L, Magnani M (1994) J Liq Chromatogr 17:347–357CrossRefGoogle Scholar
  26. 26.
    Palmerini CA, Fini C, Cantelmi MG, Floridi A (1987) J Chromatogr Biomed Appl 423:292–296Google Scholar
  27. 27.
    Fekkes D, Voskuilen-Kooyman A, Jankie R, Huijmans J (2000) J Chromatogr B 744:183–188CrossRefGoogle Scholar
  28. 28.
    Yang CS, Tsai PJ, Chen WY, Tsai WJ, Kuo JS (1999) J Chromatogr B 734:1–6CrossRefGoogle Scholar
  29. 29.
    Gupta M, Amma MKP (1992) J Liq Chromatogr 15:2153–2163CrossRefGoogle Scholar
  30. 30.
    Cui YL, Xiao L, Wan CC, Mao JW, Yu YP (2009) The Novel Reaction Mechanisms of the Taurine Recycled Synthesis by HVLC Assay. Scientific & Technical Development Inc., FlushingGoogle Scholar
  31. 31.
    Zanetta JP, Vincendo G, Mandel P, Gombos G (1970) J Chromatogr 51:441–458CrossRefGoogle Scholar
  32. 32.
    Futani S, Ubuka T, Abe T (1994) J Chromatogr B Biomed Appl 660:164–169CrossRefGoogle Scholar
  33. 33.
    Bianchi L, Della Corte L, Tipton KF (1999) J Chromatogr B 723:47–59CrossRefGoogle Scholar
  34. 34.
    Cataldi TRI, Telesca G, Bianco G, Nardiello D (2004) Talanta 64:626–630CrossRefGoogle Scholar
  35. 35.
    Mou SF, Ding XJ, Liu YJ (2002) J Chromatogr B 781:251–267CrossRefGoogle Scholar
  36. 36.
    Seracu D (1988) Rev Chim 39:54–58Google Scholar
  37. 37.
    Michel MC (1968) Ann Biol Anim Biochim Biophys 8:557–560CrossRefGoogle Scholar
  38. 38.
    Labadie M, Neuzil E, Breton JC (1965) Bull Soc Chim Biol 47:2125–2130Google Scholar
  39. 39.
    Cernei N, Zitka O, Ryvolova M, Adam V, Masarik M, Hubalek J, Kizek R (2012) Int J Electrochem Sci 7:4286–4301Google Scholar
  40. 40.
    Gaitonde MK, Short RA (1971) Analyst 96:274–280CrossRefGoogle Scholar
  41. 41.
    Chen L, Chen Q, Zhang ZZ, Wan XC (2009) J Food Compos Anal 22:137–141CrossRefGoogle Scholar
  42. 42.
    Causon R (1997) J Chromatogr B 689:175–180CrossRefGoogle Scholar
  43. 43.
    Bugianesi R, Serafini M, Simone F, Wu DY, Meydani S, Ferro-Luzzi A, Azzini E, Maiani G (2000) Anal Biochem 284:296–300CrossRefGoogle Scholar
  44. 44.
    Long GL, Winefordner JD (1983) Anal Chem 55:A712–A724CrossRefGoogle Scholar
  45. 45.
    Ziegler F, Leboucher J, Coudraylucas C, Cynober L (1992) J Autom Chem 14:145–149CrossRefGoogle Scholar
  46. 46.
    Piao S, Cha YN, Kim C (2011) J Clin Biochem Nutr 49:50–56CrossRefGoogle Scholar
  47. 47.
    Kim BS, Cho IS, Park S, Schuller-Levis G, Levis W, Park E (2011) J Drugs Dermatol 10:659–665Google Scholar
  48. 48.
    Koplove HM (1984) Chem Eng 91:145–146Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lukas Nejdl
    • 1
  • Jiri Sochor
    • 1
    • 2
  • Ondrej Zitka
    • 1
    • 2
  • Natalia Cernei
    • 2
  • Branislav Ruttkay-Nedecky
    • 1
    • 2
  • Pavel Kopel
    • 1
    • 2
  • Petr Babula
    • 2
  • Vojtech Adam
    • 1
    • 2
  • Jaromir Hubalek
    • 1
    • 2
  • Rene Kizek
    • 1
    • 2
  1. 1.Department of Chemistry and Biochemistry, Faculty of AgronomyMendel University in BrnoBrnoCzech Republic
  2. 2.Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic

Personalised recommendations