, Volume 76, Issue 7–8, pp 355–362 | Cite as

Paramagnetic Particles Isolation of Influenza Oligonucleotide Labelled with CdS QDs

  • Ludmila Krejcova
  • David Hynek
  • Pavel Kopel
  • Vojtech Adam
  • Jaromir Hubalek
  • Libuse Trnkova
  • Rene KizekEmail author


In this study, we describe hybridization design probes consisting of paramagnetic particles and quantum dots (QDs) with targeted DNA, and their application for detection of avian influenza virus (H5N1). Optical properties of QDs were beneficial, but the main attention was paid to the electroactivity of metal part of QDs and ODNs themselves. Differential pulse voltammetry was used for detection of cadmium(II) ions and square wave voltammetry for detection of cytosine–adenine peak in ODN-SH-Cd complex. It clearly follows from the obtained results that the optimized conditions were temperature of hybridization 25 °C, time of hybridization 35 min, and concentration of ODN-SH-Cd complex 20 μg mL−1. The detection limit (3 signal/noise) was estimated as 15 ng mL−1 of ODN-SH-Cd.


Biosensors Voltammetry Automated separation Nanoparticles Quantum dots Hybridization Virus 



Financial support from the projects NANIMEL GA CR 102/08/1546 and CEITEC CZ.1.05/1.1.00/02.0068 is gratefully acknowledged.


  1. 1.
    Peiris JSM, Poon LLM, Guan Y (2012) Science 335:1173–1174CrossRefGoogle Scholar
  2. 2.
    Osterholm MT, Henderson DA (2012) Science 335:801–802CrossRefGoogle Scholar
  3. 3.
    Feng ZL, Towers S, Yang YD (2011) AAPS J 13:427–437CrossRefGoogle Scholar
  4. 4.
    Ghendon Y (1994) Eur J Epidemiol 10:451–453CrossRefGoogle Scholar
  5. 5.
    Fouchier RAM, Herfst S, Osterhaus A (2012) Science 335:662–663CrossRefGoogle Scholar
  6. 6.
    Karlas A, Machuy N, Shin Y, Pleissner KP, Artarini A, Heuer D, Becker D, Khalil H, Ogilvie LA, Hess S, Maurer AP, Muller E, Wolff T, Rudel T, Meyer TF (2010) Nature 463:818–822Google Scholar
  7. 7.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Science 277:1078–1081CrossRefGoogle Scholar
  8. 8.
    Katz E, Willner I (2004) Angew Chem Int Ed 43:6042–6108CrossRefGoogle Scholar
  9. 9.
    Hsing IM, Xu Y, Zhao WT (2007) Electroanalysis 19:755–768CrossRefGoogle Scholar
  10. 10.
    Drbohlavova J, Hrdy R, Adam V, Kizek R, Schneeweiss O, Hubalek J (2009) Sensors 9:2352–2362CrossRefGoogle Scholar
  11. 11.
    Pumera M (2011) Chem Commun 47:5671–5680CrossRefGoogle Scholar
  12. 12.
    Ahmed ARH, Olivier GWJ, Adams G, Erskine ME, Kinsman RG, Branch SK, Moss SH, Notarianni LJ, Pouton CW (1992) Biochem J 286:377–382Google Scholar
  13. 13.
    Ossendorp FA, Bruning PF, Vandenbrink JAM, Deboer M (1989) J Immunol Methods 120:191–200CrossRefGoogle Scholar
  14. 14.
    Xu HX, Sha MY, Wong EY, Uphoff J, Xu YH, Treadway JA, Truong A, O Brien E, Asquith S, Stubbins M, Spurr NK, Lai EH, Mahoney W (2003) Nucleic Acids Res 31:e43CrossRefGoogle Scholar
  15. 15.
    Lim SH, Bestvater F, Buchy P, Mardy S, Yu ADC (2009) Sensors 9:5590–5599CrossRefGoogle Scholar
  16. 16.
    Hicks JM (1984) Hum Pathol 15:112–116CrossRefGoogle Scholar
  17. 17.
    Wang J, Liu GD, Merkoci A (2003) J Am Chem Soc 125:3214–3215CrossRefGoogle Scholar
  18. 18.
    Cao YWC, Jin RC, Mirkin CA (2002) Science 297:1536–1540CrossRefGoogle Scholar
  19. 19.
    Taton TA, Mirkin CA, Letsinger RL (2000) Science 289:1757–1760CrossRefGoogle Scholar
  20. 20.
    Nicewarner-Pena SR, Freeman RG, Reiss BD, He L, Pena DJ, Walton ID, Cromer R, Keating CD, Natan MJ (2001) Science 294:137–141CrossRefGoogle Scholar
  21. 21.
    Bakalova R, Zhelev Z, Ohba H, Baba Y (2005) J Am Chem Soc 127:11328–11335CrossRefGoogle Scholar
  22. 22.
    Agrawal A, Sathe T, Nie SM (2007) J Agric Food Chem 55:3778–3782CrossRefGoogle Scholar
  23. 23.
    Peterson AW, Heaton RJ, Georgiadis RM (2001) Nucleic Acids Res 29:5163–5168CrossRefGoogle Scholar
  24. 24.
    Steel AB, Levicky RL, Herne TM, Tarlov MJ (2000) Biophys J 79:975–981CrossRefGoogle Scholar
  25. 25.
    Ryvolova M, Chomoucka J, Janu L, Drbohlavova J, Adam V, Hubalek J, Kizek R (2011) Electrophoresis 32:1619–1622Google Scholar
  26. 26.
    Krejcova L, Dospivova D, Ryvolova M, Kopel P, Hynek D, Krizkova S, Hubalek J, Adam V, Kizek R (2012) Electrophoresis. doi: 10.1002/elps.201200304
  27. 27.
    Li H, Shih WY, Shih WH (2007) Ind Eng Chem Res 46:2013–2019CrossRefGoogle Scholar
  28. 28.
    Adam V, Huska D, Hubalek J, Kizek R (2010) Microfluid Nanofluid 8:329–339CrossRefGoogle Scholar
  29. 29.
    Huska D, Hubalek J, Adam V, Vajtr D, Horna A, Trnkova L, Havel L, Kizek R (2009) Talanta 79:402–411CrossRefGoogle Scholar
  30. 30.
    Janicek Z, Huska D, Trnkova L, Provaznik I, Hubalek J, Kizek R (2010) J Biochem Technol 2:S87–S88Google Scholar
  31. 31.
    Long GL, Winefordner JD (1983) Anal Chem 55:A712–A724CrossRefGoogle Scholar
  32. 32.
    Huska D, Adam V, Trnkova L, Kizek R (2009) J Magn Magn Mater 321:1474–1477CrossRefGoogle Scholar
  33. 33.
    Ju HX, Zhang XJ, Wang J (2011) In: Nanobiosensing: principles, development and application. Springer, New York, pp 535–567Google Scholar
  34. 34.
    Nam JM, Park SJ, Mirkin CA (2002) J Am Chem Soc 124:3820–3821CrossRefGoogle Scholar
  35. 35.
    Nam JM, Thaxton CS, Mirkin CA (2003) Science 301:1884–1886CrossRefGoogle Scholar
  36. 36.
    Rosi NL, Mirkin CA (2005) Chem Rev 105:1547–1562CrossRefGoogle Scholar
  37. 37.
    Wang J (2009) ACS Nano 3:4–9CrossRefGoogle Scholar
  38. 38.
    Huska D, Zitka O, Krystofova O, Adam V, Babula P, Zehnalek J, Bartusek K, Beklova M, Havel L, Kizek R (2010) Int J Electrochem Sci 5:1535–1549Google Scholar
  39. 39.
    Kleckerova A, Sobrova P, Krystofova O, Sochor J, Zitka O, Babula P, Adam V, Docekalova H, Kizek R (2011) Int J Electrochem Sci 6:6011–6031Google Scholar
  40. 40.
    Slinker JD, Muren NB, Renfrew SE, Barton JK (2011) Nat Chem 3:228–233CrossRefGoogle Scholar
  41. 41.
    Halfpenny KC, Wright DW (2010) Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:277–290CrossRefGoogle Scholar
  42. 42.
    Nolan RL, Cai H, Nolan JP, Goodwin PM (2003) Anal Chem 75:6236–6243CrossRefGoogle Scholar
  43. 43.
    Ho YP, Kung MC, Yang S, Wang TH (2005) Nano Lett 5:1693–1697CrossRefGoogle Scholar
  44. 44.
    Willner I, Patolsky F, Wasserman J (2001) Angew Chem Int Ed 40:1861–1864CrossRefGoogle Scholar
  45. 45.
    Chomoucka J, Drbohlavova J, Masarik M, Ryvolova M, Huska D, Prasek J, Horna A, Trnkova L, Provaznik I, Adam V, Hubalek J, Kizek R (2012) Int J Nanotechnol 9:746–783CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ludmila Krejcova
    • 1
  • David Hynek
    • 1
    • 2
  • Pavel Kopel
    • 1
    • 2
  • Vojtech Adam
    • 1
    • 2
  • Jaromir Hubalek
    • 2
    • 3
  • Libuse Trnkova
    • 1
    • 2
  • Rene Kizek
    • 1
    • 2
    Email author
  1. 1.Department of Chemistry and Biochemistry, Faculty of AgronomyMendel University in BrnoBrnoCzech Republic
  2. 2.Central European Institute of Technology, Brno University of TechnologyBrnoCzech Republic
  3. 3.Department of Microelectronics, Faculty of Electrical Engineering and CommunicationBrno University of TechnologyBrnoCzech Republic

Personalised recommendations