Chromatographia

, Volume 75, Issue 1–2, pp 1–6 | Cite as

Isolation of 6,9,12,15-Hexadecatetraenoic Fatty Acid (16:4n-1) Methyl Ester from Transesterified Fish Oil by HSCCC

Original

Abstract

Fish oil is considered a healthy food due to the presence of large amounts of polyunsaturated fatty acids (PUFAs), especially in the form of n-3 fatty acids 5,8,11,14,17-eicosapentaenoic acid (20:5n-3; EPA) and 4,7,10,13,16,19-docosahexaenoic acid (22:6n-3; DHA). However, fish oil is known to contain many other PUFAs, some of which are uncommon and whose bioactivity is scarcely investigated. In this study, we isolated the rare PUFA 6,9,12,15-hexadecatetraenoic fatty acid (16:4n-1) which bears a double bond on the terminal carbon from fish oil in form of its methyl ester. We used high-speed counter-current chromatography (HSCCC) for the fractionation of 500 mg-portions of fatty acid methyl esters prepared from a fish oil capsule and investigated the fractions by GC/MS. Twenty-eight 13-mL fractions were collected and fatty acid methyl esters were detected in fractions 11–23. The elution was carried out in normal phase mode, providing the long-chained saturated and monoenoic fatty acids first. More than 100 fatty acids ranging from 10:0 to 26:0 could be identified in the HSCCC fractions, and most of them were polyunsaturated. The reproducibility of the HSCCC method was shown by repeated injection of the fish oil and the fractions containing 6,9,12,15-hexadecatetraenoic fatty acid (16:4n-1). The late eluting 16:4n-1 methyl ester was isolated in pure form and its structure was verified.

Keywords

High-speed counter-current chromatography Fish oil Polyunsaturated fatty acids 16:4n-1 

Supplementary material

10337_2011_2155_MOESM1_ESM.pdf (57 kb)
Supplementary material 1 (PDF 69 kb)

References

  1. 1.
    Jabeen F, Chaudhry AS (2011) Food Chem 125:991–996CrossRefGoogle Scholar
  2. 2.
    Spiteller G (2005) Lipids 40:755–771CrossRefGoogle Scholar
  3. 3.
    Spiteller G (2007) Mol Biotechnol 37:5–12CrossRefGoogle Scholar
  4. 4.
    Leaf A, Weber PC (1988) New Engl J Med 318:549–557CrossRefGoogle Scholar
  5. 5.
    Hauff S, Vetter W (2010) Anal Bioanal Chem 396:2695–2707CrossRefGoogle Scholar
  6. 6.
    Leu E, Falk-Petersen S, Hessen DO (2007) Limnol Oceanogr 52:787–797CrossRefGoogle Scholar
  7. 7.
    Thompson PA, Harrison PJ (1992) Mar Biol 113:645–654CrossRefGoogle Scholar
  8. 8.
    Budge SM, Parish CC, McKenzie CH (2001) Mar Chem 76:285–303CrossRefGoogle Scholar
  9. 9.
    Scott CL, Falk-Petersen S, Sargent JR, Hop H, Lönne OL, Poltermann M (1999) Polar Biol 21:65–70CrossRefGoogle Scholar
  10. 10.
    Sayanova O, Haslam R, Guschina I, Lloyd D, Christie WW, Harwood JL, Napier JA (2006) J Biol Chem 281:36533–36541CrossRefGoogle Scholar
  11. 11.
    Barlow SM, Stansby ME (eds) (1982) Nutritional evaluation of long-chain fatty acids in fish oil. Academic Press, LondonGoogle Scholar
  12. 12.
    Ando Y, Ota T, Takagi T (1989) J Am Oil Chem Soc 66:1323–1325CrossRefGoogle Scholar
  13. 13.
    Ackman RG (1089) Fatty acids. In: Ackman RG (ed) Marine biogenic lipids, fats, and oils. CRC Press, Boca Raton, pp 103–137Google Scholar
  14. 14.
    Ito Y (2005) J Chromatogr A 1065:145–168CrossRefGoogle Scholar
  15. 15.
    Ito Y, Bowman RL (1970) Science 167:181CrossRefGoogle Scholar
  16. 16.
    Winterhalter P (2007) Trends Food Sci Technol 18:507–513CrossRefGoogle Scholar
  17. 17.
    Marston A, Hostettmann K (1994) J Chromatogr A 658:315–341CrossRefGoogle Scholar
  18. 18.
    Du Q, Jerz G, Winterhalter P (2004) J Chromatogr A 1045:59–63CrossRefGoogle Scholar
  19. 19.
    Du Q, Shu A, Ito Y (1996) J Liq Chrom Relat Technol 19:1451–1457CrossRefGoogle Scholar
  20. 20.
    Bousquet O, Goffic FL (1995) J Chromatogr A 704:211–216CrossRefGoogle Scholar
  21. 21.
    Kapp T, Vetter W (2009) J Chromatogr A 1216:8391–8397CrossRefGoogle Scholar
  22. 22.
    Schröder M, Vetter W (2011) Anal Bioanal Chem 400:3615–3623CrossRefGoogle Scholar
  23. 23.
    Schröder M, Vetter W (2011) J Am Oil Chem Soc 88:341–349CrossRefGoogle Scholar
  24. 24.
    Thurnhofer S, Vetter W (2006) J Agric Food Chem 54:3209–3214CrossRefGoogle Scholar
  25. 25.
    Thurnhofer S, Vetter W (2005) J Agric Food Chem 53:8896–8903CrossRefGoogle Scholar
  26. 26.
    Brauner A, Budzikiewicz H, Boland W (1982) Org Mass Spectrom 17:161–164CrossRefGoogle Scholar
  27. 27.
    Fellenberg AJ, Johnson DW, Poulos A, Sharp P (1987) Biol Mass Spectrom 14:127–129CrossRefGoogle Scholar
  28. 28.
    Hauff S, Vetter W (2009) J Agric Food Chem 57:3423–3430CrossRefGoogle Scholar
  29. 29.
    Christie WW (2011) Mass spectrometry of fatty acid derivatives. The lipid library. http://lipidlibrary.aocs.org/ms/masspec.html. Accessed, 22 May 2011
  30. 30.
    Gaul S, Lehnert K, Conrad J, Vetter W (2005) J Sep Sci 17:2268–2274CrossRefGoogle Scholar
  31. 31.
    Vetter W, Kirres J, Bendig P (2011) Chemosphere 84:1117–1124CrossRefGoogle Scholar
  32. 32.
    Dobson G, Christie WW, Nikolova-Damyanova B (1995) J Chromatogr B 671:197–222CrossRefGoogle Scholar
  33. 33.
    Du Q, Wu P, Ito Y (2000) Anal Chem 72:3363–3365CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Food Chemistry (170b)University of HohenheimStuttgartGermany

Personalised recommendations