, 74:693 | Cite as

Preparation of Monolithic Imprinted Stationary Phase for Clenbuterol by In Situ Polymerization and Application in Biological Samples Pretreatment

  • Yifen Luo
  • Ping Huang
  • Qiang FuEmail author
  • Wei Du
  • Sijuan Sun
  • Ya Li
  • Meng Liu
  • Chun Chang


A clenbuterol (CLB) molecule-imprinted monolithic stationary phase (MIMSP) with specific recognition for CLB and some other β2-adrenergic receptor agonists was prepared by in situ polymerization technique utilizing methacrylic acid as a functional monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linking reagent, and low polar solvents (toluene and dodecanol) as porogenic solvents. The optimal polymerization conditions were as follows: the molar ratio of template:monomer:initiator was 5:20:1, EDMA was 85% (v/v) in the total volume of monomer and EDMA, and toluene was 18% (v/v) in the total mixed porogen. The selectivity of the stationary phase for CLB and other β2-adrenergic receptor agonists was evaluated by high performance liquid chromatography. Scatchard analysis was employed to explore the recognition mechanism. Then the CLB-MIMSP was used as a solid phase extraction (SPE) stationary phase for concentration and purification of CLB from pig liver samples. The results showed that the obtained CLB-MIMSP possessed high selectivity towards CLB and moderate selectivity towards some other β2-adrenergic receptor agonists with characteristics of easy-made. The limit of detection was 10 ng g−1, and recoveries of CLB were 99.16–113.06% with RSD 4.55–11.81% for the spiked pig liver samples. The CLB-MIMSP could be a promising SPE absorbent in CLB biological sample pretreatment.


Column liquid chromatography Clenbuterol Molecule-imprinted monolithic stationary phase In situ polymerization Solid phase extraction Biological samples pretreatment 



Financial support of this work by National Natural Science Foundations of China (No.30873193) to Qiang FU is gratefully acknowledged. The authors also thank professor Jun Haginaka from Mukogawa Women’s University, Japan, for his helpful discussion in molecularly imprinted polymers preparation.


  1. 1.
    Re G, Badino P, Novelli A, Girardi C (1997) Effects of clenbuterol as a repartitioning agent on [beta]-adrenoceptor concentrations in heart, bronchi and brain of veal calves. Vet J 153(1):63–70. doi: 10.1016/s1090-0233(97)80009-3 CrossRefGoogle Scholar
  2. 2.
    Kearns CF, McKeever KH (2009) Clenbuterol and the horse revisited. Vet J 182(3):384–391. doi: 10.1016/j.tvjl.2008.08.021 CrossRefGoogle Scholar
  3. 3.
    Waterfield CJ, Jairath M, Asker DS, Timbrell JA (1995) The biochemical effects of clenbuterol: with particular reference to taurine and muscle damage. Eur J Pharmacol Environ Toxicol Pharmacol Section 293(2):141–149. doi: 10.1016/0926-6917(95)00010-0 CrossRefGoogle Scholar
  4. 4.
    Mazzanti G, Di Sotto A, Daniele C, Battinelli L, Brambilla G, Fiori M, Loizzo S, Loizzo A (2007) A pharmacodynamic study on clenbuterol-induced toxicity: [beta]1- and [beta]2-adrenoceptors involvement in guinea-pig tachycardia in an in vitro model. Food Chem Toxicol 45(9):1694–1699. doi: 10.1016/j.fct.2007.03.002 CrossRefGoogle Scholar
  5. 5.
    Masci G, Casati G, Crescenzi V (2001) Synthesis and LC characterization of clenbuterol molecularly imprinted polymers. J Pharm Biomed Anal 25(2):211–217. doi: 10.1016/s0731-7085(00)00477-5 CrossRefGoogle Scholar
  6. 6.
    Vlatakis G, Andersson LI, Muller R, Mosbach K (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361(6413):645–647CrossRefGoogle Scholar
  7. 7.
    Haginaka J (2005) Selectivity of affinity media in solid-phase extraction of analytes. Trends Anal Chem 24(5):407–415CrossRefGoogle Scholar
  8. 8.
    Sambe H, Hoshina K, Haginaka J (2007) Molecularly imprinted polymers for triazine herbicides prepared by multi-step swelling and polymerization method: their application to the determination of methylthiotriazine herbicides in river water. J Chromatogr A 1152(1–2):130–137. doi: 10.1016/j.chroma.2006.09.003 CrossRefGoogle Scholar
  9. 9.
    Zhang QQ, Fu Q, Amut EJ, Fang Q, Zeng AG, Chang C (2009) Preparation and evaluation of propranolol-imprinted monolithic stationary phase by in situ technique and application in analysis of propranolol in biological samples. Anal Lett 42(3):536–554. doi: 10.1080/00032710802677084 CrossRefGoogle Scholar
  10. 10.
    Brambilla G, Fiori M, Rizzo B, Crescenzi V, Masci G (2001) Use of molecularly imprinted polymers in the solid-phase extraction of clenbuterol from animal feeds and biological matrices. J Chromatogr B 759(1):27–32. doi: 10.1016/s0378-4347(01)00199-2 CrossRefGoogle Scholar
  11. 11.
    Andrea P, Miroslav S, Silvia S, Stanislav M (2001) A solid binding matrix/molecularly imprinted polymer-based sensor system for the determination of clenbuterol in bovine liver using differential-pulse voltammetry. Sens Actuator B 76(1–3):286–294CrossRefGoogle Scholar
  12. 12.
    Bruins CHP, Jeronimus-Stratingh CM, Ensing K, van Dongen WD, de Jong GJ (1999) On-line coupling of solid-phase extraction with mass spectrometry for the analysis of biological samples: I. determination of clenbuterol in urine. J Chromatogr A 863(1):115–122. doi: 10.1016/s0021-9673(99)00959-0 CrossRefGoogle Scholar
  13. 13.
    Ou JJ, Kong L, Pan CS, Su XY, Lei XY, Zou HF (2006) Determination of dl-tetrahydropalmatine in Corydalis yanhusuo by l-tetrahydropalmatine imprinted monolithic column coupling with reversed-phase high performance liquid chromatography. J Chromatogr A 1117(2):163–169. doi: 10.1016/j.chroma.2006.03.084 CrossRefGoogle Scholar
  14. 14.
    Yin J, Yang G, Chen Y (2005) Rapid and efficient chiral separation of nateglinide and its l-enantiomer on monolithic molecularly imprinted polymers. J Chromatogr A 1090(1–2):68–75. doi: 10.1016/j.chroma.2005.06.078 CrossRefGoogle Scholar
  15. 15.
    Amut E, Fu Q, Fang Q, Liu R, Xiao AP, Zeng AG, Chang C (2010) In situ polymerization preparation of chiral molecular imprinting polymers monolithic column for amlodipine and its recognition properties study. J Polym Res 17(3):401–409. doi: 10.1007/s10965-009-9326-3 CrossRefGoogle Scholar
  16. 16.
    Rao TP, Kala R, Daniel S (2006) Metal ion-imprinted polymers: novel materials for selective recognition of inorganics. Anal Chim Acta 578(2):105–116. doi: 10.1016/j.aca.2006.06.065 CrossRefGoogle Scholar
  17. 17.
    Xu ZF, Kuang DZ, Feng YL, Zhang FX (2010) Combination of hydrophobic effect and electrostatic interaction in imprinting for achieving efficient recognition in aqueous media. Carbohydr Polym 79(3):642–647. doi: 10.1016/j.carbpol.2009.09.010 CrossRefGoogle Scholar
  18. 18.
    Zhu Q-Z, Haupt K, Knopp D, Niessner R (2002) Molecularly imprinted polymer for metsulfuron-methyl and its binding characteristics for sulfonylurea herbicides. Anal Chim Acta 468(2):217–227. doi: 10.1016/s0003-2670(01)01437-4 CrossRefGoogle Scholar
  19. 19.
    Haginaka J, Takehira H, Hosoya K, Tanaka N (1999) Uniform-sized molecularly imprinted polymer for (S)-naproxen selectively modified with hydrophilic external layer. J Chromatogr A 849(2):331–339. doi: 10.1016/s0021-9673(99)00570-1 CrossRefGoogle Scholar
  20. 20.
    Xiang Y, Chen D (2007) Preparation of a novel pH-responsive silver nanoparticle/poly(HEMA-PEGMA-MAA) composite hydrogel. Eur Polym J 43(10):4178–4187. doi: 10.1016/j.eurpolymj.2007.08.005 CrossRefGoogle Scholar
  21. 21.
    Verliefde ARD, Cornelissen ER, Heijman SGJ, Verberk J, Amy GL, Van der Bruggen B, van Dijk JC (2008) The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration. J Memb Sci 322(1):52–66. doi: 10.1016/j.memsci.2008.05.022 CrossRefGoogle Scholar
  22. 22.
    Herraez-Hernandez R, Campins-Falco P (2000) Derivatization of ephedrine with o-phthaldialdehyde for liquid chromatography after treatment with sodium hypochlorite. J Chromatogr A 893(1):69–80CrossRefGoogle Scholar
  23. 23.
    Vamvaca K, Jelesarov I, Hilvert D (2008) Kinetics and thermodynamics of ligand binding to a molten globular enzyme and its native counterpart. J Mol Biol 382(4):971–977. doi: 10.1016/j.jmb.2008.07.049 CrossRefGoogle Scholar
  24. 24.
    van Zoelen EJJ, Kramer RH, van Moerkerk HTB, Veerkamp JH (1998) The use of nonhomologous scatchard analysis in the evaluation of ligand–protein interactions. Trends Pharmacol Sci 19(12):487–490CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yifen Luo
    • 1
  • Ping Huang
    • 1
  • Qiang Fu
    • 1
    Email author
  • Wei Du
    • 1
  • Sijuan Sun
    • 1
  • Ya Li
    • 1
  • Meng Liu
    • 1
  • Chun Chang
    • 1
  1. 1.Faculty of Pharmacy, School of MedicineXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations