Advertisement

Chromatographia

, Volume 74, Issue 1–2, pp 19–27 | Cite as

Comparison of LC Columns Packed with 2.6 μm Core-Shell and Sub-2 μm Porous Particles for Gradient Separation of Antibiotics

  • Tereza Tylová
  • Zdeněk KameníkEmail author
  • Miroslav Flieger
  • Jana Olšovská
Original

Abstract

The recently introduced Kinetex C18 column packed with core-shell 2.6 μm particles is declared to provide similar efficiency and short analysis as Acquity BEH C18 column with 1.7 μm porous particles. Unlike Acquity BEH C18 column, Kinetex C18 column exhibited lower column backpressure making this column compatible to conventional LC systems. The performance of Kinetex C18 column (2.1 × 50 mm) and Acquity BEH C18 column (2.1 × 50 mm) for gradient separation of tetracyclines under acidic conditions (oxytetracycline, tetracycline, chlortetracycline, and doxycycline) and macrolides under alkaline conditions (tylosin, clarithromycin, roxithromycin, and carbomycin) was studied. The columns were compared by evaluation of their experimental peak capacity and its dependence on linear velocity and gradient slope. The maximal experimental peak capacities for analysis of tetracyclines were 51.8 (Acquity BEH C18 column) and 48.4 (Kinetex C18 column). This indicated that Kinetex C18 was a suitable alternative to Acquity BEH C18 column for the analysis of tetracyclines under acidic conditions. On the contrary, the maximal experimental peak capacities for analysis of macrolides on Acquity BEH C18 column was higher (46.7) than that on Kinetex C18 column (36.9). Moreover, application of Kinetex C18 column for the analysis of macrolides under alkaline conditions was limited with respect to its decreasing performance with growing number of injections on the column.

Keywords

Column liquid chromatography Sub-2 μm particles Acquity BEH C18 column Core-shell particles Kinetex C18 column Macrolides Tetracyclines 

Notes

Acknowledgments

This work was supported by Research Projects 1M06011 and MSM0021620857 of the Ministry of Education, Youth and Sport of the Czech Republic, Research Project SVV261204 and by Institutional Research Concept No. AV0Z50200510.

References

  1. 1.
    Stroh JG, Petucci CJ, Brecker SJ, Nogle LM (2008) J Sep Sci 31:3698–3703CrossRefGoogle Scholar
  2. 2.
    Pragst F, Herzler M, Erxleben BT (2004) Clin Chem Lab Med 42:1325–1340CrossRefGoogle Scholar
  3. 3.
    Vogeser M, Seger C (2008) Clin Biochem 41:649–662CrossRefGoogle Scholar
  4. 4.
    Klein EJ, Rivera SL (2000) J Liq Chromatogr Relat Technol 23:2097–2121CrossRefGoogle Scholar
  5. 5.
    Mellors JS, Jorgenson J (2004) Anal Chem 76:5441–5450CrossRefGoogle Scholar
  6. 6.
    Swartz ME (2005) J Liq Chrom 28:1253–1263CrossRefGoogle Scholar
  7. 7.
    Cunliffe JM, Maloney TD (2007) J Sep Sci 30:3104–3109CrossRefGoogle Scholar
  8. 8.
    Way WK, Brandes H (2008) LC GC North Am Suppl S:64–64Google Scholar
  9. 9.
    DeStefano JJ, Langlois TJ, Kirkland JJ (2008) J Chromatogr Sci 46:254–260Google Scholar
  10. 10.
    Koerner P, Mathews T (2010) LC GC North Am. Suppl. S:55–59Google Scholar
  11. 11.
    Abrahim A, Al-Sayah M, Skrdla P, Bereznitski Y, Chen Y, Wu N (2010) J Pharm Biomed Anal 51:131–137CrossRefGoogle Scholar
  12. 12.
    Gritti F, Guiochon G (2010) J Chromatogr A 1217:1604–1615CrossRefGoogle Scholar
  13. 13.
    Gritti F, Leonardis I, Shock D, Stevenson P, Shalliker A, Guiochon G (2010) J Chromatogr A 1217:1589–1603CrossRefGoogle Scholar
  14. 14.
    Gritti F, Leonardis I, Abia J, Guiochon G (2010) J Chromatogr A 1217:3819–3843CrossRefGoogle Scholar
  15. 15.
    Oláh E, Fekete S, Fekete J, Ganzler K (2010) J Chromatogr A 1217:3642–3653CrossRefGoogle Scholar
  16. 16.
    Batt AL, Aga DS (2005) Anal Chem 77:2940–2947CrossRefGoogle Scholar
  17. 17.
    Gomis DB, Nunez NS, Garcia EA, Abrodo PA, Alvarez MDG (2006) J Liq Chromatogr Relat Technol 29:1861–1875CrossRefGoogle Scholar
  18. 18.
    Snyder LR, Dolan JW (2007) High-performance gradient elution—the practical application of linear-solvent-strength model. Wiley, New Jersey, pp 15–18Google Scholar
  19. 19.
    Snyder L (1986) High performance liquid chromatography–advances and perspectives. Elsevier, AmsterdamGoogle Scholar
  20. 20.
    Snyder LR, Dolan JW, Gant JR (1979) J Chromatogr 165:3–30CrossRefGoogle Scholar
  21. 21.
    Dolan JW, Gant JR, Snyder LR (1979) J Chromatogr 165:31–58Google Scholar
  22. 22.
    Olsovska J, Kamenik Z, Cajthaml T (2009) J Chromatogr A 1216:5774–5778CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Tereza Tylová
    • 1
    • 2
  • Zdeněk Kameník
    • 1
    • 2
    Email author
  • Miroslav Flieger
    • 1
  • Jana Olšovská
    • 1
  1. 1.Institute of Microbiology of the Academy of Sciences of the Czech RepublicPrague 4Czech Republic
  2. 2.Faculty of ScienceCharles UniversityPrague 2Czech Republic

Personalised recommendations