, 73:941 | Cite as

Models for Liquid–Liquid Partition in the System Ethylene Glycol–Organic Solvent and Their Use for Estimating Descriptors for Organic Compounds

  • Thushara Karunasekara
  • Colin F. PooleEmail author


Partition coefficients for varied compounds were determined for the ethylene glycol–organic solvent biphasic partition system where the organic solvent is n-heptane, 1,2-dichloroethane or isopentyl ether. These partition coefficient databases are analyzed using the solvation parameter model facilitating a quantitative comparison of the ethylene glycol-based partition systems with other totally organic partition systems. Ethylene glycol is a cohesive solvent, reasonably dipolar/polarizable, strongly hydrogen-bond basic, and moderately hydrogen-bond acidic. Ethylene glycol–organic solvent systems offer a complementary approach to other totally organic biphasic partition systems for sample preparation and descriptor measurements of compounds virtually insoluble in water.


Liquid–liquid partition Solvation parameter model Totally organic biphasic systems Ethylene glycol 


  1. 1.
    Sarafraz-Yazdi A, Amiri A (2010) Trends Anal Chem 29:1–14CrossRefGoogle Scholar
  2. 2.
    Jeannot MA, Przyjazny A, Kobosa JM (2010) J Chromatogr A 1217:2326–2336CrossRefGoogle Scholar
  3. 3.
    Rezaee M, Yamini Y, Faraji M (2010) J Chromatogr A 1217:2342–2357CrossRefGoogle Scholar
  4. 4.
    Poole SK, Dean TA, Oudsema JW, Poole CF (1990) Anal Chim Acta 236:3–42CrossRefGoogle Scholar
  5. 5.
    Poole CF (2003) Trends Anal Chem 22:362–373CrossRefGoogle Scholar
  6. 6.
    Berthod A, Carda-Broch S (2004) J Chromatogr A 1037:3–14CrossRefGoogle Scholar
  7. 7.
    Abraham MH, Ibrahim A, Zissimos AM (2004) J Chromatogr A 1037:29–37CrossRefGoogle Scholar
  8. 8.
    Karunasekara T, Poole CF (2010) J Sep Sci 33:1167–1173Google Scholar
  9. 9.
    Karunasekara T, Poole CF (2011) Talanta 83:1118–1125CrossRefGoogle Scholar
  10. 10.
    Karunasekara T, Poole CF (2011) J Chromatogr A 1218:809–816CrossRefGoogle Scholar
  11. 11.
    Poole CF, Atapattu SN, Poole SK, Bell AK (2009) Anal Chim Acta 652:32–53CrossRefGoogle Scholar
  12. 12.
    Abraham MH, Poole CF, Poole SK (1999) J Chromatogr A 842:79–114CrossRefGoogle Scholar
  13. 13.
    Poole CF, Poole SK (2002) J Chromatogr A 965:263–299CrossRefGoogle Scholar
  14. 14.
    Poole CF, Gunatilleka AD, Poole SK (2000) Adv Chromatogr 40:159–230Google Scholar
  15. 15.
    Abraham MH, Gola GMR, Kumarsingh R, Cosmetto-Muniz JE, Cain WS (2000) J Chromatogr B 745:103–115CrossRefGoogle Scholar
  16. 16.
    Ahmed H, Poole CF, Kozerski GE (2007) J Chromatogr A 1169:179–192CrossRefGoogle Scholar
  17. 17.
    Atapattu SN, Poole CF (2009) J Chromatogr A 1216:7882–7888CrossRefGoogle Scholar
  18. 18.
    Forkner MW, Robson JH, Snellings WM, Martin AE, Murphy FH, Pearsons TE (2004) In: Kirk-Othmer Encyclopedia of Chemical Technology, vol 12. Wiley, New York, pp 644–682Google Scholar
  19. 19.
    Paterson A, Couradi RA, Hilgers AR, Vidmar TJ, Burton PS (1994) Quant Struc Act Relat 13:4–10Google Scholar
  20. 20.
    Abraham MH, Martins F, Mitchell RC, Salter CJ (1999) J Pharm Sci 88:241–247CrossRefGoogle Scholar
  21. 21.
    Abraham MH, Acree WE (2010) New J Chem 34:2298–2305CrossRefGoogle Scholar
  22. 22.
    Kazoka H, Shatz V (1996) J Chromatogr A 732:231–238CrossRefGoogle Scholar
  23. 23.
    Silber JJ, Falcone RD, Cores NM, Biasutti MA, Abuin E, Lissi E, Campodonico P (2003) Langmuir 19:2067–2071CrossRefGoogle Scholar
  24. 24.
    Kennard RW, Stone LA (1969) Technometrics 11:137–148CrossRefGoogle Scholar
  25. 25.
    Ahmed H, Poole CF (2006) J Chromatogr A 1104:82–90CrossRefGoogle Scholar
  26. 26.
    Ahmed H, Poole CF (2006) J Sep Sci 29:2158–2165CrossRefGoogle Scholar
  27. 27.
    Qian J, Poole CF (2007) J Chromatogr A 1143:276–283CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Chemistry, Rm 181 ChemistryWayne State UniversityDetroitUSA

Personalised recommendations