Advertisement

Chromatographia

, 73:1015 | Cite as

Electrospun Nanofibers Sorbents for Pre-Concentration of 1,1-dichloro-2,2 bis-(4-chlorophenyl)ethylene with Subsequent Desorption by Pressurized Hot Water Extraction

  • David Adeyemi
  • Janes MokgadiEmail author
  • James Darkwa
  • Chimezie Anyakora
  • Grace Ukpo
  • Charlotta Turner
  • Nelson Torto
Full Short Communication

Abstract

Electrospun polystyrene (PS) nanofibers (130–500 nm) incorporating a potassium salt of imidazole-1-carbodithioate were evaluated as potential sorbents for the pre-concentration of a model organochlorine pesticide; 1,1-dichloro-2,2bis-(4-chlorophenyl)ethylene (DDE). The efficiencies of DDE (0.25–1.0 μg L−1) adsorption by the nanofiber sorbent followed by desorption employing pressurized hot water extraction (PHWE) were investigated and monitored using gas chromatography with electron capture detection (GC-ECD). Parameters such as time, temperature and pressure of extraction, sample volume, DDE concentration and sorbent mass were optimized. The maximum adsorption of DDE (0.50 μg L−1) on electrospun PS and carbodithioate incorporated PS nanofibers was at 43.7 and 94.6%, respectively, in 20 min. Incorporation of carbodithiote doubled the adsorption efficiency of PS and achieved LOD of 0.000234 μg L−1 for DDE. The optimal DDE desorption on the PHWE system was 93.8% in 10 min. It would seem that the use of electrospun nanofibers as sorbent material with subsequent desorption by PHWE has great potential and thus warrants further investigations. This approach as it uses water as an extraction solvent for an organochlorine pesticide provides an opportunity to eliminate organic solvents, especially for procedures aimed at monitoring organic pollutants in the environment.

Keywords

Electrospun nanofibers Sorbents Pre-concentration Organochlorine pesticides 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from the African Network of Analytical Chemists (SEANAC), Water Research Commission and the National Research Foundation of South Africa, Andrew Mellon foundation and STINT.

References

  1. 1.
    Smith AG, Gangoli SD (2002) Food Chem Toxicol 40:767–779CrossRefGoogle Scholar
  2. 2.
    Wang Y, Zhang M, Wang Q, Yang D, Li C (2008) Sci Total Environ 396:34–41CrossRefGoogle Scholar
  3. 3.
    Ennaceur S, Gandoura N, Driss M (2007) Environ Contam Toxicol 78:325–329CrossRefGoogle Scholar
  4. 4.
    Bella G, Licata P, Bruzzese C, Naccari C, Trombetta V, Turco G, Dugo A, Richetti F, Naccari F (2006) Environ Int 32:705–710CrossRefGoogle Scholar
  5. 5.
    Yańez L, Ortiz-Pérez D, Batres L, Borja-Aburto V, Díaz-Barriga F (2002) Environ Res 88:174–181CrossRefGoogle Scholar
  6. 6.
    Ennacer S, Gandoura, Driss M (2008) Environ Res 108:86–93CrossRefGoogle Scholar
  7. 7.
    Uppala PT, Roy SK, Tousson A, Barnes S, Uppala GR, Eastmond DA (2005) Environ Mol Mutagen 46:43–52CrossRefGoogle Scholar
  8. 8.
    Ahmed FE (2001) Trends Anal Chem 20:649–658CrossRefGoogle Scholar
  9. 9.
    Basri G, Cengiz U, Omur C, Olgun G, Bekir S (2008) React Funct Polym 68:580–593CrossRefGoogle Scholar
  10. 10.
    Buldini PL, Ricci L, Sharma JL (2002) J Chromatogr A 975:47–70CrossRefGoogle Scholar
  11. 11.
    Fontanals N, Marce R, Borrulli F (2007) J Chromatogr A 1152:14–32CrossRefGoogle Scholar
  12. 12.
    Shimelis O, Yang Y, Stenerson K, Kaneko T, Ye M (2007) J Chromatogr A 1165:18–25CrossRefGoogle Scholar
  13. 13.
    Mc Donald R (1989) J Chromatogr B 492:3–58CrossRefGoogle Scholar
  14. 14.
    Chatzimichalakis PF, Samanidou VF, Papadoyannis IN (2004) J Chromatogr B 805:289–296CrossRefGoogle Scholar
  15. 15.
    Xue-Jun K, Li Qin C, Yi-Yun Z, Yang-Wei L, Zhong-Ze G (2008) J Sep Sci 31:3272–3278CrossRefGoogle Scholar
  16. 16.
    Turner C, King JW, Mathiasson L (2001) J Chromatogr A 936:215–237CrossRefGoogle Scholar
  17. 17.
    Kataoka H, Lord HL, Pawliszyn J (2000) J Chromatogr A 880:35–62CrossRefGoogle Scholar
  18. 18.
    Wardencki W, Michulec M, Curylo J (2004) Int J Food Sci Tech 39:703–717CrossRefGoogle Scholar
  19. 19.
    Adahchour M, Beens J, Vreuls RJJ, Batenburg AM, Rosing EAE, Brinkman UAT (2002) Chromatographia 55:361–367CrossRefGoogle Scholar
  20. 20.
    Pawliszyn J (2007) Handbook of solid phase microextraction University of Waterloo, WaterlooGoogle Scholar
  21. 21.
    Ramakrishna S, Fujihara W, Teo T, Yong Z, Ramashema R (2006) Mater Today 9:40–50CrossRefGoogle Scholar
  22. 22.
    Mita D, Diano C, Nicolucci I, Rashkov I (2009) Eur Polym J 45:2494–2504CrossRefGoogle Scholar
  23. 23.
    Huang X, Xu K, Wan LS, Innocent C, Seta P (2006) Macromol Rapid Commun 27:1341–1345CrossRefGoogle Scholar
  24. 24.
    Stankusa JJ, Guan J, Fujimotoc K, Wagner WR (2006) Biomaterials 27:735–744CrossRefGoogle Scholar
  25. 25.
    Greiner A, Wendorff J (2007) Angew Chem Int Ed 46:5670–5703CrossRefGoogle Scholar
  26. 26.
    Boussahel R, Bouland S, Moussaoui KM, Baudu M, Montiel A (2002) Water Res 36:1909–1911CrossRefGoogle Scholar
  27. 27.
    Xuejun K, Cao P, Qian X, Yinfang Y, Yian W, Dongjin Q, Zhongze G (2007) Anal Chim Acta 587:75–81CrossRefGoogle Scholar
  28. 28.
    Zhiyong L, Xuejun K, Fang F (2010) Microchim Acta 168:59–64CrossRefGoogle Scholar
  29. 29.
    Chigome S, Darko G, Buttner U, Torto N (2010) Anal Methods 2:623–626CrossRefGoogle Scholar
  30. 30.
    Qi D, Kang X, Chen L, Zhang Y, Wei H, Gu Z (2008) Anal Bioanal Chem 390:926–938CrossRefGoogle Scholar
  31. 31.
    Tretinnikov ON (2002) Langmuir 16:2751–2755CrossRefGoogle Scholar
  32. 32.
    Vogler EA (1998) Adv Colloid Interface Sci 74:89–106CrossRefGoogle Scholar
  33. 33.
    Hartonen K, Inkala K, Kangas M, Riekkola M-L (1997) J Chromatogr A 785:219–226CrossRefGoogle Scholar
  34. 34.
    Teo C, Tan S, Yong H, Hew S, Ong S (2010) J Chromatogr A 1217:2484–2494CrossRefGoogle Scholar
  35. 35.
    Bavel B, Hartonen K, Rappe C, Riekkola M-L (1999) Analyst 124:1351–1363CrossRefGoogle Scholar
  36. 36.
    Trofimenko S (1968) J Org Chem 33:890–892CrossRefGoogle Scholar
  37. 37.
    Ziabari M, Mottaghittalab A, Haggi A (2009) Braz J Chem Eng 26:53–62CrossRefGoogle Scholar
  38. 38.
    Anderson EB, Long TE (2010) Polymer 51:2447–2454CrossRefGoogle Scholar
  39. 39.
    Lee K, Kim H, Ra Y, Lee D (2003) Polymer 44:1287–1294CrossRefGoogle Scholar
  40. 40.
    Ridgway K, Lalljie SPD, Smith RM (2007) J Chromatogr A 1153:36–53CrossRefGoogle Scholar
  41. 41.
    Smith RM (2002) J Chromatogr A 975:31–46CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • David Adeyemi
    • 1
    • 2
  • Janes Mokgadi
    • 1
    Email author
  • James Darkwa
    • 3
  • Chimezie Anyakora
    • 2
  • Grace Ukpo
    • 2
  • Charlotta Turner
    • 4
  • Nelson Torto
    • 1
  1. 1.Department of ChemistryRhodes UniversityGrahamstownSouth Africa
  2. 2.Department of Pharmaceutical Chemistry, Faculty of PharmacyUniversity of LagosLagosNigeria
  3. 3.Department of ChemistryUniversity of JohannesburgAuckland ParkSouth Africa
  4. 4.Department of Chemistry, Center for Analysis and SynthesisLund UniversityLundSweden

Personalised recommendations