Advertisement

Chromatographia

, Volume 73, Issue 9–10, pp 975–983 | Cite as

Synthesis and Application of High Selective Monolithic Fibers Based on Molecularly Imprinted Polymer for SPME of Trace Methamphetamine

  • Djavanshir DjozanEmail author
  • Mir Ali Farajzadeh
  • Saeed Mohammad Sorouraddin
  • Tahmineh Baheri
Original

Abstract

A monolithic solid-phase microextraction (SPME) fiber was fabricated based on a molecularly imprinted polymer which could be coupled with gas chromatography for extraction, pre-concentration and determination of methamphetamine (MAMP). Methacrylic acid, ethylene glycol dimethacrylate and MAMP play the roles of functional monomer, cross-linker and template, respectively. The effective factors influencing the polymerization and extraction procedures were investigated and will be detailed here. The fabricated fiber was firm, inexpensive, stable, selective and durable which gives it vital importance in SPME. Selectivity of the fabricated fiber in relation to the template in solution containing MAMP, related and unrelated compounds was also investigated. Under the optimum conditions, the calibration plot was linear in the range of 50–3,500 ng mL−1 (r 2  = 0.997). The high extraction efficiency was obtained for MAMP giving a detection limit of 14 ng mL−1. The fabricated fiber was successfully applied to SPME of MAMP from human saliva samples followed by gas chromatography-flame ionization detector analysis.

Keywords

Gas chromatography Methamphetamine Molecularly imprinted polymer Saliva Solid-phase microextraction 

Notes

Acknowledgments

The authors would like to thank the Research Office at the University of Tabriz for financial support.

References

  1. 1.
    Bar AM, Panenka WJ, MacEwan W, Thornton AE, Lang DJ, Honer WG, Lecomte T (2006) J Psychiatry Neurosci 31:301–313Google Scholar
  2. 2.
    Kraemer T, Maurer HH (1998) J Chromatogr B 713:163–187CrossRefGoogle Scholar
  3. 3.
    Pichini S, Pacifici R, Pellegrini M, Marchei E, Lozano J, Nurillo J, Vall O, Garcia-Algar O (2004) Anal Chem 76:2124–2132CrossRefGoogle Scholar
  4. 4.
    Hendrickson HP, Milesi-Halle A, Laurenzana EM, Owens SM (2004) J Chromatogr B 806:81–87CrossRefGoogle Scholar
  5. 5.
    Moeller MR, Steinmeyer S, Kraemer T (1998) J Chromatogr B 713:91–109CrossRefGoogle Scholar
  6. 6.
    González-Marino I, Quintana JB, Rodríguez I, Rodil R, González-Penas J, Cela R (2009) J Chromatogr A 1216:8435–8441CrossRefGoogle Scholar
  7. 7.
    Myung SW, Min HK, Kim S, Kim M, Cho JB, Kim TJ (1998) J Chromatogr B 716:359–365CrossRefGoogle Scholar
  8. 8.
    Ugland HG, Krogh M, Rasmussen KE (1997) J Chromatogr B 701:29–38CrossRefGoogle Scholar
  9. 9.
    Raikos N, Christopoulou K, Theodoridis G, Tsoukali H, Psaroulis D (2003) J Chromatogr B 789:59–63CrossRefGoogle Scholar
  10. 10.
    Yashiki M, Kojima T, Miyazaki T, Nagasawa N, Iwasaki Y, Hara K (1995) Forensic Sci Int 76:169–177CrossRefGoogle Scholar
  11. 11.
    Lord HL, Pawliszyn J (1997) Anal Chem 69:3899–3906CrossRefGoogle Scholar
  12. 12.
    Chia KJ, Huang SD (2005) Anal Chim Acta 539:49–54CrossRefGoogle Scholar
  13. 13.
    Fan Y, Feng Y, Zhang J, Da S, Zhang M (2005) J Chromatogr A 1074:9–16CrossRefGoogle Scholar
  14. 14.
    Cormack PAG, Elorza AZ (2004) J Chromatogr B 804:173–182CrossRefGoogle Scholar
  15. 15.
    Andrade R, Reyes FGR, Rath S (2005) Food Chem 91:173–179CrossRefGoogle Scholar
  16. 16.
    Zhou F, Li X, Zeng Z (2005) Anal Chim Acta 538:63–70CrossRefGoogle Scholar
  17. 17.
    Djozan Dj, Pournaghi-Azar MH, Bahar S (2004) Chromatographia 59:595–599CrossRefGoogle Scholar
  18. 18.
    Djozan Dj, Assadi Y (2001) Anal Chem 73:4054–4058CrossRefGoogle Scholar
  19. 19.
    Gierak A, Seredych M, Bartnicki A (2006) Talanta 69:1079–1087CrossRefGoogle Scholar
  20. 20.
    Jiang R, Zhu F, Luan T, Tong Y, Liu H, Ouyang G, Pawliszyn J (2009) J Chromatogr A 1216:4641–4647CrossRefGoogle Scholar
  21. 21.
    Mohammadi A, Yamini Y, Alizadeh N (2005) J Chromatogr A 1063:1–8CrossRefGoogle Scholar
  22. 22.
    Mullet WM, Martin P, Pawliszyn J (2001) Anal Chem 73:2383–2389CrossRefGoogle Scholar
  23. 23.
    Djozan Dj, Baheri T (2007) J Chromatogr A 1166:16–23CrossRefGoogle Scholar
  24. 24.
    Djozan Dj, Baheri T, Pournaghi Azar MH, Mahkam M (2007) Mater Manuf Process 22:758–763CrossRefGoogle Scholar
  25. 25.
    Djozan Dj, Ebrahimi B (2008) Anal Chim Acta 616:152–159CrossRefGoogle Scholar
  26. 26.
    Sellergren B (2003) Techniques and instrumentation in analytical chemistry, vol 23. Elsevier, AmsterdamGoogle Scholar
  27. 27.
    Qi J, Li X, Li Y, Zhu J, Qiang L (2008) Chem Eng China 2:109–115CrossRefGoogle Scholar
  28. 28.
    Cháfer-Pericás C, Campíns-Falcó P, Herráez-Hernández R (2004) Anal Biochem 333:328–335CrossRefGoogle Scholar
  29. 29.
    Huang Z, Zhang S (2003) J Chromatogr B 792:241–247CrossRefGoogle Scholar
  30. 30.
    Kudo K, Ishida T, Hara K, Kashimura S, Tsuji A, Ikeda N (2007) J Chromatogr B 855:115–120CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Djavanshir Djozan
    • 1
    Email author
  • Mir Ali Farajzadeh
    • 1
  • Saeed Mohammad Sorouraddin
    • 1
  • Tahmineh Baheri
    • 2
  1. 1.Laboratory of Chromatography, Faculty of ChemistryUniversity of TabrizTabrizIran
  2. 2.The Research Center of Antinarcotics PoliceTehranIran

Personalised recommendations