, Volume 73, Supplement 1, pp 143–149 | Cite as

LC-ESI-MS-MS Method for Monitoring Dopamine, Serotonin and Their Metabolites in Brain Tissue

  • Věra Najmanová
  • Lukáš Rambousek
  • Kamila Syslová
  • Věra Bubeníková
  • Romana Šlamberová
  • Karel Valeš
  • Petr KačerEmail author
Full short communication


A rapid and precise LC-ESI-MS-MS method for the parallel identification and quantification of dopamine, serotonin and their metabolites (homovanillic acid, 3-methoxytyramine, 3,4-dihydroxyphenylacetic acid and 5-hydroxyindolacetic acid) from rat brain tissue without any pre-analysis adjustment of the sample such as pre-concentration or derivatization has been developed. In particular, the reaction-monitoring mode was selected for its extremely high degree of selectivity and the stable-isotope-dilution assay for its high precision of quantification. Alternation the ionization polarity in the course of mass spectrometry detection enabled to determine substances susceptible to various ionization modes in only one analysis run. This fact, in combination with an easy pre-treatment step, constitutes the method straightforward and time undemanding. The developed method was characterized with a high precision (≤19.5%, determined as RSD), an acceptable accuracy (≥82.0%, determined as recovery), a low limit of detection (≤0.40 ng/100 mg brain tissue) and a low limit of quantification (≤0.42 ng/100 mg brain tissue). The method has been applied in a recent animal study. The levels of the studied neurotransmitters have been determined in the rat brain hippocampus, prefrontal cortex, and striatum in an animal model of schizophrenia induced by an acute dose of a dizocilpine.


LC-ESI-MS-MS Dopamine Serotonin Homovanillic acid 3-Methoxytyramine 3,4-Dihydroxyphenylacetic acid 5-Hydroxyindolacetic acid 



The authors wish to acknowledge with gratitude the financial support by the Grant Agency of the Czech Republic (Grant GACR P303/10/0580, 305/09/0126 and 203/08/H032), Institutional Research Concept (AV0Z50200510), Ministry of Health of the Czech Republic (IGA MZ 10365-3) and the Ministry of Education of the Czech Republic (Grant CEZ: MSM 604 613 7301).


  1. 1.
    Baranyi M, Milusheva E, Vizi ES, Sperlágh B (2006) J Chromatogr A 1120:13CrossRefGoogle Scholar
  2. 2.
    Cooper JR, Bloom FE, Roth RH (2003) The biochemical basis of neuropharmacology, 8th edn. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Fuxe K, Dahlstroem AB, Jonsson G, Marcellino D, Guescini M, Dam M, Manger P, Agnati L (2010) Prog Neurobiol 90:82–100CrossRefGoogle Scholar
  4. 4.
    Yoshitake T, Kehr J, Yoshitake S, Fujino K, Nohta H, Yamaguchi M (2004) J Chromatogr B 807:177–183CrossRefGoogle Scholar
  5. 5.
    Wetherell JR, Fosbraey P, French MC (1989) J Neurochem 53:1519–1526CrossRefGoogle Scholar
  6. 6.
    Lwin A, Patel BA (2010) J Separ Sci 33:1538–1545CrossRefGoogle Scholar
  7. 7.
    Shakulashvili N, Finkler C, Engelhardt H (1998) Chromatographia 47:89–92CrossRefGoogle Scholar
  8. 8.
    Ch CF, Kuo JS, Shih Y, Lai JS, Ni DR, Chia LG (1993) J Chromatogr B 615:225–236CrossRefGoogle Scholar
  9. 9.
    Gamache P, Ryan E, Svendsen C, Murayama K, Acworth IN (1993) J Chromatogr B 614:213–220CrossRefGoogle Scholar
  10. 10.
    Gan Y (2006) Anal Lett 39:1837–1851CrossRefGoogle Scholar
  11. 11.
    Patel BA, Arundell M, Parker KH, Yeoman MS, O’Hare D (2005) J Chromatogr B 818:269–276CrossRefGoogle Scholar
  12. 12.
    Vaarmann A, Kask A, Maeorg U (2002) J Chromatogr B 769:145–153CrossRefGoogle Scholar
  13. 13.
    Su F, Wang F, Zhu R, Li H (2008) Chromatographia 69:207–213CrossRefGoogle Scholar
  14. 14.
    Tareke E, Bowyer JF, Doerge DR (2007) Rapid Commun Mass Spectr 21:3898–3904CrossRefGoogle Scholar
  15. 15.
    Hows MEP, Lacroix L, Heidbreder C, Organ AJ, Shah AJ (2004) J Neurosci Methods 138:123–132CrossRefGoogle Scholar
  16. 16.
    Ji C, Li W, Ren X, El-Kattan AF, Kozak R, Fountain S, Lepsy C (2008) Anal Chem 80:9195–9203CrossRefGoogle Scholar
  17. 17.
    Tornkvist A, Sjoberg PJR, Markides KE, Bergquist J (2004) J Chromatogr B 801:323–329CrossRefGoogle Scholar
  18. 18.
    Zhao X-E, Suo Y-R (2008) Talanta 76:690–697CrossRefGoogle Scholar
  19. 19.
    Uutela P, Reinila R, Harju K, Piepponen P, Ketola RA, Kostiainen R (2009) Anal Chem 81:8417–8425CrossRefGoogle Scholar
  20. 20.
    Bourne JA (2003) Clin Exp Pharmacol Physiol 30:16CrossRefGoogle Scholar
  21. 21.
    Plock N, Kloft C (2005) Eur J Pharm Sci 25:1CrossRefGoogle Scholar
  22. 22.
    Bubenikova-Valesova V, Horacek J, Vrajova M, Hoschl C (2008) Neurosci Biobehav Rev 32:1014–1023CrossRefGoogle Scholar
  23. 23.
    Liu S, Sjo J, Griffiths WJ (2003) Anal Chem 75:5835–5846CrossRefGoogle Scholar
  24. 24.
    Birgner C, Kindlundh-Högberg A, Ploj K, Lindblom J, Nyberg F, Bergström L (2006) Pharmacol Online 3:99–108Google Scholar
  25. 25.
    Verbiese-Genard N, Kauffmann JM, Hanocq M, Molle L (1984) J Electroanal Chem 170:243CrossRefGoogle Scholar
  26. 26.
    Kotake C, Heffner T, Vosmer G, Seiden L (1985) Pharmacol Biochem Behav 22:85CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Věra Najmanová
    • 1
  • Lukáš Rambousek
    • 1
    • 2
    • 3
  • Kamila Syslová
    • 1
  • Věra Bubeníková
    • 2
  • Romana Šlamberová
    • 4
  • Karel Valeš
    • 3
  • Petr Kačer
    • 1
    Email author
  1. 1.Institute of Chemical TechnologyPrague 6Czech Republic
  2. 2.Department of Biochemistry and Brain PathophysiologyPrague Psychiatric CenterPrague 8Czech Republic
  3. 3.Institute of PhysiologyPrague 4Czech Republic
  4. 4.Department of Normal Pathological and Clinical PhysiologyThird Faculty of Medicine, Charles UniversityPrague 10Czech Republic

Personalised recommendations