Advertisement

Chromatographia

, Volume 73, Issue 5–6, pp 517–525 | Cite as

Examination of Template Structural Effects on CEC Chiral Separation Performance of Molecule Imprinted Polymers Made by a Generalized Preparation Protocol

  • Shabi Abbas Zaidi
  • Seung Mi Lee
  • Zeid A. AL Othman
  • Abdullah M. AL Majid
  • Won Jo CheongEmail author
Original

Abstract

Some acidic chiral templates were used to prepare open tubular (OT) molecule imprinted polymer (MIP) capillary columns to explore the effects of molecular structures of templates on chiral recognition capabilities and to verify the feasibility of the general MIP preparation protocol introduced in the previous study. The templates are phenyl carboxylic acids and their derivatives. Optimization was carried out for chiral separation of template enantiomers for each MIP column through varying pH and composition of eluent. It was found that the preparation protocol can be successfully applied for the appropriate templates with functional groups fulfilling the three-points interaction rule. The chiral separation performances were quite satisfactory for MIPs of such templates although they are yet inferior to the separation performances of the MIP columns fabricated with the templates of profen drugs (2-arylpropionic acids with a large substituent on the phenyl ring). Subtle variations of the template molecular structures have been found to be critical to enhance chiral recognition ability of the resultant MIP column.

Keywords

Capillary electrochromatography Molecule imprinted polymer Chiral separation Template structural effects Generalized preparation protocol 

Notes

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0015720).

References

  1. 1.
    Miyako E, Maruyama T, Kamiya N, Goto M (2004) J Am Chem Soc 126:8622–8623. doi: 10.1021/ja049378d CrossRefGoogle Scholar
  2. 2.
    Hutt AG, O’Grady J (1996) J Antimicrob Chemother 37:7–32. doi: 10.1093/jac/37.1.7 CrossRefGoogle Scholar
  3. 3.
    Tang K, Yi J, Liu Y, Jiang X, Pan Y (2009) Chem Eng Sci 64:4081–4088. doi: 10.1016/j.ces.2009.06.029 CrossRefGoogle Scholar
  4. 4.
    Andersson S, Balmer K, Persson BA (1999) Chirality 11:420–425. doi: 10.1002/(SICI)1520-636X(1999) CrossRefGoogle Scholar
  5. 5.
    Schweitz L, Spegel P, Nilsson S (2001) Electrophoresis 22:4053–4063. doi: 10.1002/1522-2683(200111) CrossRefGoogle Scholar
  6. 6.
    Vallano PT, Remcho VT (2000) J Chromatogr A 887:125–135. doi: 10.1016/S0021-9673(99)01199-1 CrossRefGoogle Scholar
  7. 7.
    Nilsson J, Spegel P, Nilsson S (2004) J Chromatogr B 804:3–12. doi: 10.1016/j.jchromb.2003.12.036 CrossRefGoogle Scholar
  8. 8.
    Maier NM, Lindner W (2007) Anal Bioanal Chem 389:377–397. doi: 10.1007/s00216-007-1427-4 CrossRefGoogle Scholar
  9. 9.
    Spegel P, Schweitz L, Nilsson S (2003) Electrophoresis 24:3892–3899. doi: 10.1002/elps.200305665 CrossRefGoogle Scholar
  10. 10.
    Liu CY, Lin CC (2004) Electrophoresis 25:3997–4007. doi: 10.1002/elps.200406160 CrossRefGoogle Scholar
  11. 11.
    Liu ZS, Zheng C, Yan C, Gao RY (2007) Electrophoresis 28:127–136. doi: 10.1002/elps.200600544 CrossRefGoogle Scholar
  12. 12.
    Bruggemann O, Freitag R, Whitcombe MJ, Vulfson EN (1997) J Chromatogr A 781:43–53. doi: 10.1016/S0021-9673(97)00288-4 CrossRefGoogle Scholar
  13. 13.
    Tan ZJ, Remcho VT (1998) Electrophoresis 19:2055–2060. doi: 10.1002/elps.1150191203 CrossRefGoogle Scholar
  14. 14.
    Schweitz L (2002) Anal Chem 74:1192–1196. doi: 10.1021/ac0156520 CrossRefGoogle Scholar
  15. 15.
    Huang YC, Lin CC, Liu CY (2004) Electrophoresis 25:554–561. doi: 10.1002/elps.200305735 CrossRefGoogle Scholar
  16. 16.
    Zaidi SA, Cheong WJ (2009) J Chromatogr A 1216:2947–2952. doi: 10.1016/j.chroma.2008.08.015 CrossRefGoogle Scholar
  17. 17.
    Zaidi SA, Cheong WJ (2008) J Sep Sci 31:2962–2970. doi: 10.1002/jssc.200800160 CrossRefGoogle Scholar
  18. 18.
    Zaidi SA, Cheong WJ (2009) Electrophoresis 30:1603–1607. doi: 10.1002/elps.200800541 CrossRefGoogle Scholar
  19. 19.
    Zaidi SA, Han KM, Kim SS, Hwang DG, Cheong WJ (2009) J Sep Sci 32:996–1001. doi: 10.1002/jssc.200800631 CrossRefGoogle Scholar
  20. 20.
    Zaidi SA, Han KM, Hwang DG, Cheong WJ (2010) Electrophoresis 31:1019–1028Google Scholar
  21. 21.
    Hjerten S (1985) J Chromatogr 347:191–198. doi: 10.1016/S0021-9673(01)95485-8 CrossRefGoogle Scholar
  22. 22.
    Sellergren B, Shea KJ (1993) J Chromatogr A 635:31–49. doi: 10.1016/0021-9673(93)83112-6 CrossRefGoogle Scholar
  23. 23.
    Wu L, Zhu K, Zhao M, Li Y (2005) Anal Chim Acta 549:39–44. doi: 10.1016/j.aca.2005.06.009 CrossRefGoogle Scholar
  24. 24.
    Schmidt RH, Belmont AS, Haupt K (2005) Anal Chim Acta 542:118–124. doi: 10.1016/j.aca.2005.03.064 CrossRefGoogle Scholar
  25. 25.
    Gonzalez GP, Hernando PF, Algeria JSD (2006) Anal Chim Acta 557:179–183. doi: 10.1016/j.aca.2005.10.034 CrossRefGoogle Scholar
  26. 26.
    Booker KM, Bowyer MC, Lennard CJ, Holdsworth CI, McCluskey A (2007) Aust J Chem 60:51–56. doi: 10.1071/CH06284 CrossRefGoogle Scholar
  27. 27.
    Berthod A (2006) Anal Chem 78:2093–2099. doi: 10.1021/ac0693823 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Shabi Abbas Zaidi
    • 1
  • Seung Mi Lee
    • 1
  • Zeid A. AL Othman
    • 2
  • Abdullah M. AL Majid
    • 2
  • Won Jo Cheong
    • 1
    Email author
  1. 1.Department of Chemistry, Nano Fine Center, and Institute of Basic ResearchInha UniversityIncheonSouth Korea
  2. 2.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations