Stable hydrogen isotope measurements of songbird feathers: effects of intra-feather variability and sample processing

  • Oscar GordoEmail author
Original Article


Deuterium composition of feathers has been widely applied to establish provenance of birds. Surprisingly, little attention has been paid to the potential sources of unwanted hydrogen isotopic variability that may affect the comparability and replicability of deuterium measurements. Feathers may exhibit hydrogen isotopic differences between distal and proximal sections, as well as between rachis and vane. For this reason, it is recommended to always analyse ground vane from the same section of the feather. However, this protocol may be seriously limiting when working with songbird feathers, which are usually small and light. In this paper, intra-feather hydrogen isotopic variability was studied in four species of songbirds by comparing four sections of the same feather. No difference in hydrogen isotopic composition was found between distal and proximal sections of the vane. This was expected as songbird feathers grow rapidly and individuals avoid geographical movements during moult, favouring a homogeneous source of hydrogen during keratin synthesis. Conversely, as previously demonstrated for other avian species, rachis showed systematically c. 11‰ δ2H more negative values than vane. This is probably a result of their biochemical and ultrastructural differences, which seem strongly conserved across taxa. Such differences imply that we need to describe which feather part was used in the methods of our reports to ensure full comparability and replicability among studies. Nevertheless, vane and rachis δ2H were strongly correlated, demonstrating that rachis can be also used in isotope analyses because its δ2H can be accurately rescaled. This is useful since rachis represents an important fraction of feather mass in songbirds. Values of δ2H from ground and non-ground samples from the same feather were also compared. There was no effect of the processing protocol, suggesting that grinding is unnecessary when working with passerine feathers.


Deuterium Keratinous material Methodology Passerines Protocol Tissue 


Messungen stabiler Wasserstoffisotopen in Singvogel-Federn: Effekte der Intra-Federn-Variabilität und Probenverarbeitung

Die Deuteriumzusammensetzung von Federn wird üblicherweise eingesetzt, um die Herkunft von Vögeln festzustellen. Überraschenderweise wird dabei aber nur wenig auf potenzielle Quellen einer unerwünschten Wasserstoffisotopen-Variabilität geachtet, die die Vergleichbarkeit und Wiederholbarkeit der Deuteriummessungen beeinflussen können. Federn können zwischen ihren distalen und proximalen Abschnitten sowie zwischen Wirbelsäule und Flügeln Unterschiede in den Wasserstoffisotopen aufzeigen. Deshalb empfiehlt es sich, Analysen stets von den gleichen Federabschnitten zu machen. Diese Regel führt jedoch bei Singvogelfedern zu einer ernsthaften Einschränkung, weil diese normalerweise klein und leicht sind. In dieser Studie untersuchten wir bei vier Singvogelarten die Wasserstoffisotopen-Variabilität in den gleichen Federn, indem vier Abschnitte derselben Feder verglichen wurden. Zwischen dem distalen und proximalen Abschnitt desselben Flügels wurden keine Unterschiede in der Wasserstoffisotopen-Zusammensetzung gefunden. Das war erwartet worden, weil Singvogelfedern schnell wachsen und die einzelnen Tiere Ortsveränderungen während der Mauser vermeiden und somit während der Keratin-Synthese eine homogene Wasserstoffversorgung haben. Andererseits, wie schon früher für andere Vogelarten festgestellt, zeigt der Schaft systematisch ca. 11‰ δ2H mehr negative Werte als die Federfahne. Vermutlich liegt das an biochemischen und ultrastrukturellen Unterschieden, die sich durch alle Taxa hindurchziehen. Diese Unterschiede machen es empfehlenswert, immer anzugeben, welche Federabschnitte verwendet wurden, um eine volle Vergleichbarkeit und Wiederholbarkeit der Untersuchungen zu gewährleisten. Nichtsdestotrotz korrelierten die δ2H von Schaft und Fahne hoch miteinander und zeigten, dass auch der Schaft für die Isotopenanalyse benutzt werden kann, weil seine δ2H-Werte entsprechend korrekt skaliert werden können. Das ist deshalb sehr hilfreich, weil bei Singvögeln der Schaft einen wichtigen Anteil der gesamten Federmasse darstellt. Die δ2H-Werte von zermahlenen und nicht zerkleinerten Proben der gleichen Federn wurden ebenfalls untersucht und kein Unterschied festgestellt, was nahelegt, dass bei der Arbeit mit Singvogelfedern ein Zermahlen der Federn unnötig ist.



I thank to José Luis Arroyo, Rubén Rodríguez, Ángel Sallent and Benito Fuertes for collecting samples, and Sarai López and Manuela G. Forero for their assistance in the lab. I am especially grateful to Margarida Barceló-Serra for her manuscript review and English edits. Two anonymous reviewers provided helpful comments that improved a first version of this article. Feather sampling was conducted in accordance with Spanish law, approved by the Ethical Committee of the CSIC (Ref. 23/02/2018/015), and with the permits given by the Dirección General de Gestión del Medio Natural y Espacios Protegidos de la Junta de Andalucía, and the Espacio Natural de Doñana (No. 2017/20). OG also has a training certificate (No. 000023) given by the IFAPA (Junta de Andalucía) which, according to Spanish Law (ECC/566/2015), is necessary for any experiments with animals. This study was funded by a grant to OG from the Spanish Ministry of Economy (Ref. CGL2014-56041-JIN).


  1. Arroyo JL (2004) La estación de anillamiento de Manecorro (Parque Nacional de Doñana, Huelva): anillamiento de paseriformes durante la migración postpnucial (1994–2005). Revista de Anillamiento 13:56–66Google Scholar
  2. Bensch S, Hasselquist D, Hedenström A, Ottosson U (1991) Rapid moult among palaearctic passerines in West Africa-an adaptation to the oncoming dry season? Ibis 133:47–52CrossRefGoogle Scholar
  3. Blight LK, Hobson KA, Kyser TK, Arcese P (2015) Changing gull diet in a changing world: a 150-year stable isotope (δ13C, δ15N) record from feathers collected in the Pacific Northwest of North America. Global Change Biol 21:1497–1507CrossRefGoogle Scholar
  4. Bontempo L, Ceppa F, Ziller L, Pedrini P, Hobson KA, Wassenaar LI, Camin F (2014) Comparison of methods for stable isotope ratio (δ13C, δ15N, δ2H, δ18O) measurements of feathers. Method Ecol Evol 5:363–371CrossRefGoogle Scholar
  5. Bortolotti GR (2010) Flaws and pitfalls in the chemical analysis of feathers: bad news–good news for avian chemoecology and toxicology. Ecol Appl 20:1766–1774PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bowen GJ, Wassenaar LI, Hobson KA (2005) Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143:337–348PubMedCrossRefPubMedCentralGoogle Scholar
  7. Cárdenas-Ortiz L, Bayly NJ, Colorado ZGJ, Hobson KA (2017) Fall migration and breeding origins of Canada Warblers moving through northern Colombia. J Field Ornithol 88:53–64CrossRefGoogle Scholar
  8. Chamberlain CP, Blum JD, Holmes RT, Feng X, Sherry TW, Graves GR (1996) The use of isotope tracers for identifying populations of migratory birds. Oecologia 109:132–141PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chesson LA, Podlesak DW, Cerling TE, Ehleringer JR (2009) Evaluating uncertainty in the calculation of non-exchangeable hydrogen fractions within organic materials. Rapid Comm Mss Spec 23:1275–1280CrossRefGoogle Scholar
  10. De la Hera I, Hedenström A, Pérez-Tris J, Tellería JL (2010) Variation in the mechanical properties of flight feathers of the blackcap Sylvia atricapilla in relation to migration. J Avian Biol 41:342–347CrossRefGoogle Scholar
  11. De la Hera I, Schaper SV, Díaz JA, Pérez-Tris J, Bensch S, Tellería JL (2011) How much variation in the molt duration of passerines can be explained by the growth rate of tail feathers? Auk 128:321–329CrossRefGoogle Scholar
  12. Dunn E, Hobson K, Wassenaar L, Hussell D, Allen M (2006) Identification of summer origins of songbirds migrating through southern Canada in autumn. Avian Conserv Ecol 1(2):4CrossRefGoogle Scholar
  13. Emslie SD, Patterson WP (2007) Abrupt recent shift in δ13C and δ15N values in Adélie penguin eggshell in Antarctica. PNAS 104:11666–11669PubMedCrossRefPubMedCentralGoogle Scholar
  14. Grecian WJ, McGill RA, Phillips RA, Ryan PG, Furness RW (2015) Quantifying variation in δ13C and δ15N isotopes within and between feathers and individuals: Is one sample enough? Mar Biol 162:733–741PubMedPubMedCentralCrossRefGoogle Scholar
  15. Greenhouse SW, Geisser S (1959) On methods in the analysis of profile data. Psychometrika 24:95–112CrossRefGoogle Scholar
  16. Harrap BT, Woods EF (1967) Species differences in the proteins of feathers. Comp Biochem Physiol 20:449–460CrossRefGoogle Scholar
  17. Hawke DJ, Brown JC, Bury SJ (2018) The prevention and detection of human error in ecological stable isotope analysis. Methods Ecol Evol 9:2326–2333CrossRefGoogle Scholar
  18. Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326PubMedCrossRefPubMedCentralGoogle Scholar
  19. Hobson KA (2007) An isotopic exploration of the potential of avian tissues to track changes in terrestrial and marine ecosystems. Terr Ecol 1:127–144CrossRefGoogle Scholar
  20. Hobson KA (2011) Isotopic ornithology: a perspective. J Ornithol 152:49–66CrossRefGoogle Scholar
  21. Hobson KA, Wassenaar LI (1997) Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia 109:142–148CrossRefGoogle Scholar
  22. Hobson KA, Atwell L, Wassenaar LI (1999) Influence of drinking water and diet on the stable-hydrogen isotope ratios of animal tissues. PNAS 96:8003–8006PubMedCrossRefPubMedCentralGoogle Scholar
  23. Huynh H, Feldt LS (1976) Estimation of the Box correction for degrees of freedom from sample data in randomised block and split-plot designs. J Educ Stat 1:69–82CrossRefGoogle Scholar
  24. Jaatinen K, Öst M, Hobson KA (2016) State-dependent capital and income breeding: a novel approach to evaluating individual strategies with stable isotopes. Front Zool 13:24PubMedPubMedCentralCrossRefGoogle Scholar
  25. Jardine TD, Cunjak RA (2005) Analytical error in stable isotope ecology. Oecologia 144:528–533PubMedCrossRefPubMedCentralGoogle Scholar
  26. Jenni L, Winkler R (2011) Moult and ageing of European passerines. Christopher Helm, LondonGoogle Scholar
  27. Katzner TE, Wheeler M, Negro JJ, Kapetanakos Y, DeWoody JA, Horvath M, Lovette I (2012) To pluck or not to pluck: scientific methodologies should be carefully chosen, not ‘one size fits all’. J Avian Biol 43:15–17CrossRefGoogle Scholar
  28. Kelly JF, Atudorei V, Sharp ZD, Finch DM (2002) Insights into Wilson’s Warbler migration from analyses of hydrogen stable-isotope ratios. Oecologia 130:216–221PubMedCrossRefPubMedCentralGoogle Scholar
  29. King JR, Murphy ME (1987) Amino acid composition of the calamus, rachis, and barbs of white-crowned sparrow feathers. Condor 89:436–439CrossRefGoogle Scholar
  30. Klaassen M, Lindström Å, Meltofte H, Piersma T (2001) Arctic waders are not capital breeders. Nature 413:794PubMedCrossRefPubMedCentralGoogle Scholar
  31. Langin KM, Reudink MW, Marra PP, Norris DR, Kyser TK, Ratcliffe LM (2007) Hydrogen isotopic variation in migratory bird tissues of known origin: implications for geographic assignment. Oecologia 152:449–457PubMedCrossRefPubMedCentralGoogle Scholar
  32. Lott CA, Smith JP (2006) A geographic-information-system approach to estimating the origin of migratory raptors in North America using stable hydrogen isotope ratios in feathers. Auk 123:822–835CrossRefGoogle Scholar
  33. Marra PP, Hobson KA, Holmes RT (1998) Linking winter and summer events in a migratory bird by using stable-carbon isotopes. Science 282:1884–1886PubMedCrossRefPubMedCentralGoogle Scholar
  34. Maxwell SE (1980) Pairwise multiple comparisons in repeated measures designs. J Educ Stat 5:269–287CrossRefGoogle Scholar
  35. Mazerolle DF, Hobson KA (2005) Estimating origins of short-distance migrant songbirds in North America: contrasting inferences from hydrogen isotope measurements of feathers, claws, and blood. Condor 107:280–288CrossRefGoogle Scholar
  36. McDonald PG, Griffith SC (2011) To pluck or not to pluck: the hidden ethical and scientific costs of relying on feathers as a primary source of DNA. J Avian Biol 42:197–203CrossRefGoogle Scholar
  37. Meehan TD, Rosenfield RN, Atudorei VN, Bielefeldt J, Rosenfield LJ, Stewart AC, Stout WE, Bozek MA (2003) Variation in hydrogen stable-isotope ratios between adult and nestling Cooper’s Hawks. Condor 105:567–572CrossRefGoogle Scholar
  38. Meier-Augenstein W, Hobson KA, Wassenaar LI (2013) Critique: measuring hydrogen stable isotope abundance of proteins to infer origins of wildlife, food and people. Bioanalysis 5:751–767PubMedCrossRefPubMedCentralGoogle Scholar
  39. Merilä J (1997) Fat reserves and moult-migration overlap in goldcrests, Regulus regulus—a trade-off? Ann Zool Fenn 34:229–234Google Scholar
  40. Michalik A, McGill RA, Furness RW, Eggers T, van Noordwijk HJ, Quillfeldt P (2010) Black and white–does melanin change the bulk carbon and nitrogen isotope values of feathers? Rapid Commun Mass Spectrom 24:875–878PubMedCrossRefPubMedCentralGoogle Scholar
  41. Murphy ME, King JR, Taruscio TG, Geupel GR (1990) Amino acid composition of feather barbs and rachises in three species of pygoscelid penguins: nutritional implications. Condor 92:913–921CrossRefGoogle Scholar
  42. Newton I (1967) Feather growth and moult in some captive finches. Bird Study 14:10–24CrossRefGoogle Scholar
  43. Paritte JM, Kelly JF (2009) Effect of cleaning regime on stable-isotope ratios of feathers in Japanese Quail (Coturnix japonica). Auk 126:165–174CrossRefGoogle Scholar
  44. Pérez GE, Hobson KA (2006) Isotopic evaluation of interrupted molt in northern breeding populations of the Loggerhead Shrike. Condor 108:877–886CrossRefGoogle Scholar
  45. Procházka P, Reif J, Hořák D, Klvaňa P, Lee RW, Yohannes E (2010) Using stable isotopes to trace resource acquisition and trophic position in four Afrotropical birds with different diets. Ostrich 81:273–275CrossRefGoogle Scholar
  46. Qi H, Coplen TB (2011) Investigation of preparation techniques for δ2H analysis of keratin materials and a proposed analytical protocol. Rapid Comm Mass Spec 25:2209–2222CrossRefGoogle Scholar
  47. Rader JA, Newsome SD, Sabat P, Chesser RT, Dillon ME, Martínez del Rio C (2017) Isotopic niches support the resource breadth hypothesis. J Anim Ecol 86:405–413PubMedCrossRefPubMedCentralGoogle Scholar
  48. Robillard A, Gauthier G, Therrien JF, Fitzgerald G, Provencher JF, Bêty J (2017) Variability in stable isotopes of snowy owl feathers and contribution of marine resources to their winter diet. J Avian Biol 48:759–769CrossRefGoogle Scholar
  49. Rubenstein DR, Hobson KA (2004) From birds to butterflies: animal movement patterns and stable isotopes. Trends Ecol Evol 19:256–263PubMedCrossRefPubMedCentralGoogle Scholar
  50. Schroeder WA, Kay LM, Lewis B, Munger N (1955) The amino acid composition of certain morphologically distinct parts of white turkey feathers, and of goose feather barbs and goose down. J Am Chem Soc 77:3901–3908CrossRefGoogle Scholar
  51. Senar JC (2004) Mucho más que plumas. Museu de Ciències Naturals, BarcelonaGoogle Scholar
  52. Smith AD, Dufty AM (2005) Variation in the stable-hydrogen isotope composition of northern Goshawk feathers: relevance to the study of migratory origins. Condor 107(3):547–558CrossRefGoogle Scholar
  53. Smith TB, Marra PP, Webster MS, Lovette I, Gibbs HL, Holmes RT, Hobson KA, Rohwer S (2003) A call for feather sampling. Auk 120:218–221CrossRefGoogle Scholar
  54. Smith AD, Donohue K, Dufty AM Jr (2008) Intrafeather and intraindividual variation in the stable-hydrogen isotope (δD) content of raptor feathers. Condor 110:500–506CrossRefGoogle Scholar
  55. Smith AD, Lott CA, Smith JP, Donohue KC, Wittenberg S, Smith KG, Goodrich L (2009) Deuterium measurements of raptor feathers: Does a lack of reproducibility compromise geographic assignment? Auk 126:41–46CrossRefGoogle Scholar
  56. Soto DX, Koehler G, Wassenaar LI, Hobson KA (2017) Re-evaluation of the hydrogen stable isotopic composition of keratin calibration standards for wildlife and forensic science applications. Rapid Commun Mass Spectrom 31:1193–1203PubMedCrossRefPubMedCentralGoogle Scholar
  57. Swaddle JP, Witter MS (1997) The effects of molt on the flight performance, body mass, and behavior of European starlings (Sturnus vulgaris): an experimental approach. Can J Zool 75:1135–1146CrossRefGoogle Scholar
  58. Wassenaar LI (2019) Introduction to conducting stable isotopes measurements for animal migration studies. In: Hobson KA, Wassenaar LI (eds) Tracking animal migration with stable isotopes, 2nd edn. Elsevier, London, pp 25–51CrossRefGoogle Scholar
  59. Wassenaar LI, Hobson KA (2003) Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isot Environ Health Stud 39:211–217CrossRefGoogle Scholar
  60. Wassenaar LI, Hobson KA (2006) Stable-hydrogen isotope heterogeneity in keratinous materials: mass spectrometry and migratory wildlife tissue subsampling strategies. Rapid Commun Mass Spectrom 20:2505–2510PubMedCrossRefPubMedCentralGoogle Scholar
  61. Wiley AE, Ostrom PH, Stricker CA, James HF, Gandhi H (2010) Isotopic characterization of flight feathers in two pelagic seabirds: sampling strategies for ecological studies. Condor 112:337–346CrossRefGoogle Scholar
  62. Wiley AE, James HF, Ostrom PH (2017) Emerging techniques for isotope studies of avian ecology. In: Webster MS (ed) The extended specimen: emerging frontiers in collections-based ornithological research. CRC Press, Boca Raton, pp 89–109Google Scholar
  63. Wolf N, Newsome SD, Fogel ML, Martínez del Rio C (2012) An experimental exploration of the incorporation of hydrogen isotopes from dietary sources into avian tissues. J Exp Biol 215:1915–1922PubMedCrossRefPubMedCentralGoogle Scholar
  64. Zuberogoitia I, Zabala J, Martínez JE (2018) Moult in birds of prey: a review of current knowledge and future challenges for research. Ardeola 65:183–208CrossRefGoogle Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2019

Authors and Affiliations

  1. 1.Department of Conservation BiologyDoñana Biological Station (EBD-CSIC)SevilleSpain

Personalised recommendations