Journal of Ornithology

, Volume 160, Issue 4, pp 973–991 | Cite as

Species limits and biogeography of Rhynchospiza sparrows

  • Juan I. AretaEmail author
  • Emiliano A. Depino
  • Sergio A. Salvador
  • Steven W. Cardiff
  • Kevin Epperly
  • Ingrid Holzmann
Original Article


The genus Rhynchospiza comprises two species, the monotypic Tumbes Sparrow (R. stolzmanni) and the Stripe-crowned Sparrow (R. strigiceps) with subspecies strigiceps and dabbenei. In the study reported here we evaluated the taxonomic status of these taxa and discussed key features involved in speciation. All three taxa exhibited multiple differences in plumage, morphology, and vocalizations, supporting the recognition of three species in Rhynchospiza. The very large-billed R. stolzmanni has a song composed of a succession of faster complex trilled phrases, shows a small black loral line and dark-chestnut head stripes with large dark central-stripe to individual feathers, and is resident in the Tumbes region. The large and heavy dabbenei has a song consisting of a series of simple chirping notes, shows a large black loral crescent and chestnut head stripes with a reduced to absent dark center to feathers, and inhabits the Austral Yungas as a year-round resident. The small and pale strigiceps has a song consisting of a succession of complex trilled phrases, shows a small black loral line and rufous-brown head stripes with large dark central-stripe to feathers, and inhabits Dry and Sierran Chaco where it is a partial migrant. Locality data and ecological niche modeling show that dabbenei and strigiceps are allo-parapatric and use different altitudinally segregated habitats at their zone of parapatry. Molecular phylogenetic analyses (NADH dehydrogenase 2 [ND2] gene) revealed R. stolzmanni to be sister (11.5% divergent) to a recently diverged dabbenei and strigiceps clade (1.6% divergent). We conclude that the genus Rhynchospiza comprises three species-level entities, each restricted to a major biogeographic region, and that vocalizations and facial patterns provide key evidence on species limits in these otherwise similarly plumaged taxa. The evolutionary–cultural differences in songs, with complex phrases in those of R. strigiceps and R. stolzmanni, and single notes in the songs of R. dabbenei, suggest changes in the innate vocal learning template during speciation in the latter.


Neotropical birds Plumage conservatism Speciation Specific mate recognition systems Vocal template 


Artabgrenzung und Biogeographie der Neuweltammer-Gattung Rhynchospiza

Die Gattung Rhynchospiza umfasst zwei Arten, die monotypische Tumbesammer (R. stolzmanni) und die Streifenscheitelammer (R. strigiceps) mit den Unterarten strigiceps und dabbenei. Wir beurteilen hier den taxonomischen Status und diskutieren die Schlüsselmerkmale der Artbildung. Alle drei Taxa zeigten zahlreiche Unterschiede im Gefieder, in der Morphologie und der Lautäußerung, was die Unterscheidung der drei Arten in der Gattung Rhynchospiza unterstützt. Die Art R. stolzmanni besitzt einen kräftigen Schnabel, hat einen Gesang zusammengesetzt aus einer Abfolge von schnellen, komplexen Triller-Phrasen, weist einen schmalen schwarzen Zügelstreifen und einen kastanienbraun gefärbten Scheitelseitenstreifen mit einzelnen Federn auf, die breite dunkle Federzentren besitzen, und sie ist in der Tumbes-Region (Peru) heimisch. Die große und schwere Unterart dabbenei besitzt einen Gesang aus einer Serie von einfachen Tschilp-Elemente, einen großen schwarzen, halbmondförmigen Zügelstreifen, rotbraun gefärbte Scheitelseitenstreifen, deren Federn nur schwache bis fehlende dunkle Federzentren aufweisen, und sie bewohnt den südlichen Yungas (Region in Bolivien) als Jahresvogel. Die kleine und blass gefärbte Unterart strigiceps besitzt einen Gesang zusammengesetzt aus einer Abfolge an komplexen Triller-Phrasen, hat einen kleinen schwarzen Zügelstreifen, rötlichbraune Scheitelseitenstreifen mit Federn mit großen dunklen Federzentren und lebt in „Dry Chaco“und „Sierra Chaco“als Teilzieher. Verbreitungsdaten und ökologische Nischenmodellierungen zeigen, dass die Unterarten dabbenei und strigiceps allo-parapatrisch sind und aufgrund unterschiedlicher Höhenlagen getrennte Habitate ihres parapatrischen Verbreitungsgebiets nutzen. Molekularphylogenetische Analysen (ND2 Gene) haben gezeigt, dass R. stolzmanni eine Schwesterart (11.5% Divergenz) der jüngst aufgespaltenen Klade dabbenei und strigiceps (1.6% Divergenz) ist. Wir folgern daraus, dass die Gattung Rhynchospiza drei Einheiten auf Artniveau umfasst, jede davon beschränkt auf eine große biogeographische Region. Die Lautäußerungen und Kopfzeichnungen bieten Schlüsselmerkmale zur Artenabgrenzung in diesem, ansonsten ähnlich gefiederten Taxa. Die evolutionskulturellen Unterschiede im Gesang, die komplexen Phrasen in R. strigiceps und R. stolzmanni sowie die Einzelsilben in R. dabbenei weisen darauf hin, dass bei Letzterer Änderungen in den angeborenen Gesangslernmustern während der Artbildung entstanden sind.



We thank all recordists, birdwatchers, and collectors who through time have helped build an impressive database. We thank Patricia Capllonch for clarification on some Tucumán localities and for making CENAA data available; Markus Unsöld (ZSM), Ben Marks and Mary Hennen (FMNH), Sara Bertelli and Sebastián Aveldaño (FML), J.V. Remsen Jr (LSUMNS), Yolanda Davies (MACN), Diego Montalti (MLP), Kristof Zyskowski (YPM), Stephen P. Rogers (CM), Nate Rice (ANSP), Hein Van Grow (BMNH), Paul Sweet (AMNH), and Carla Cicero (MVZ) for information on, access to, or pictures of museum specimens under their care; Carlos and Silvia Ferrari for advice on fieldwork with R. strigiceps; and G. Núñez-Montellano, E. Gulson, and T. Pegan for field companionship. Matt Medler and Matt Young promptly provided sound recordings from the MLNS. G. Núñez allowed use of his photograph of R. dabbenei and R. Ahlman of his photograph of R. stolzmanni. Carlos Bianchi provided crucial help by making the maps. Juan Freile, Fernando Angulo Pratolongo, and Tom Schulenberg helped clarify the distribution of R. stolzmanni. Fabricio C. Gorleri helped with sampling event data from eBird and illustrated the birds shown in the phylogenetic tree. John Klicka granted access to his lab and samples for phylogenetic analyses. This contribution was possible thanks to funding by a CONICET grant to JIA for the project “Taxonomía de las aves de los Andes del noroeste de Argentina” (Grant no. 3216/12).

Supplementary material

10336_2019_1695_MOESM1_ESM.xlsx (6.9 mb)
Supplementary material 1 Online Resource 1. Main database of all threeRhynchospizaspecies. List of measured and/or studied specimens, distributional records and sound recordings, type specimens and morphometric data of Yungas Sparrow (Rhynchospiza dabbenei), Chaco Sparrow (Rhynchospiza strigiceps) and Tumbes Sparrow (Rhynchospiza stolzmanni) obtained in this study. (XLSX 7063 kb)
10336_2019_1695_MOESM2_ESM.pdf (58 kb)
Supplementary material 2 Online Resource 2. Morphological characterization of Chaco Sparrow (R. strigiceps), Yungas Sparrow (Rhynchospiza dabbenei), and Tumbes Sparrow (R. stolzmanni). Measurements reported as mean ± SD, with range between square brackets and sample size between parentheses. All measurements in mm, except for weight in grams. Letters indicate significant sexual dimorphism within each taxon at alfa = 0.05 for Mann–Whitney U two-tailed tests. See Fig. 3 for interspecific comparisons. (PDF 58 kb)
10336_2019_1695_MOESM3_ESM.pdf (18.7 mb)
Supplementary material 3 Online Resource 3. Potential, geographic, seasonal and altitudinal distributions of all threeRhynchospizaspecies. A) Geographic and potential distribution of Yungas Sparrow (Rhynchospiza dabbenei) based on ecological-niche models using the full dataset. B) Geographic and potential distribution of Chaco Sparrow (Rhynchospiza strigiceps) based on ecological-niche models using the full dataset. C) Geographic and potential distribution of Yungas Sparrow (Rhynchospiza dabbenei) and Chaco Sparrow (Rhynchospiza strigiceps) and based on ecological-niche models using the full dataset of dabbenei and breeding records only in strigiceps. D) Geographic and potential distribution of Tumbes Sparrow (Rhynchospiza stolzmanni) based on ecological-niche models using the full dataset. E) Geographic, seasonal and altitudinal distribution of Yungas Sparrow (Rhynchospiza dabbenei) and Chaco Sparrow (Rhynchospiza strigiceps). F) Geographic, seasonal and altitudinal distribution of Tumbes Sparrow (Rhynchospiza stolzmanni). (PDF 19191 kb)
10336_2019_1695_MOESM4_ESM.pdf (7.7 mb)
Supplementary material 4 Online Resource 4. Bestiaries of songs of all threeRhynchospizaspecies. A) Yungas Sparrow (Rhynchospiza dabbenei). B) Chaco Sparrow (Rhynchospiza strigiceps). C) Tumbes Sparrow (Rhynchospiza stolzmanni). See Online Resource 1 for recording data. (PDF 7908 kb)
10336_2019_1695_MOESM5_ESM.tif (766 kb)
Supplementary material 5 Online Resource 5. Phylogenetic tree of allRhynchospizataxa (ND2 gene) and expanded selection of species from closely related genera. MCC tree from BEAST with posterior probability values above the nodes and corresponding maximum likelihood bootstrap value from RAxML below node; “–” indicates that the specific node did not occur in the RAxML tree. (TIFF 765 kb)
10336_2019_1695_MOESM6_ESM.pdf (86 kb)
Supplementary material 6 Online Resource 6. Estimates of evolutionary divergence between ND2 gene sequences of allRhynchospizataxa and selected species species from closely related genera. The number of base substitutions per site from between sequences are shown. Rhynchospiza taxa are highlighted in bold font. See Methods for details. (PDF 86 kb)


  1. Ábalos R, Areta JI (2009) Historia natural y vocalizaciones del Doradito Limón (Pseudocolopteryx cf. citreola) en Argentina. Ornitol Neotrop 20:215–230Google Scholar
  2. Alcaide M, Scordato ESC, Price TD, Irwin DE (2014) Genomic divergence in a ring species complex. Nature 511:83–85PubMedGoogle Scholar
  3. Areta JI (2008) Entre Ríos Seedeater (Sporophila zelichi): a species that never was. J Field Ornithol 79:352–363Google Scholar
  4. Areta JI (2012) Winter songs reveal geographic origin of three migratory Seedeaters (Sporophila spp.) in southern Neotropical grasslands. Wilson Bull 124:688–697Google Scholar
  5. Areta JI, Repenning M (2011) Systematics of the Tawny-bellied Seedeater (Sporophila hypoxantha). I. Geographic variation, ecology and evolution of vocalizations. Condor 113:664–677Google Scholar
  6. Areta JI, Noriega JI, Pagano L, Roesler I (2011) Unraveling the ecological radiation of the capuchinos: systematics of the Dark-throated Seedeater Sporophila ruficollis, and description of a new black-collared form. Bull Br Ornithol Club 131:4–23Google Scholar
  7. Areta JI, Pearman M, Ábalos R (2012) Taxonomy and biogeography of the Monte Yellow-Finch (Sicalis mendozae): understanding the endemic avifauna of Argentina’s Monte Desert. Condor 114:654–671Google Scholar
  8. Areta JI, Kirwan G, Dornas T, Araujo-Silva LE, Aleixo A (2017) Mixing the waters: a linear hybrid zone between two riverine Neotropical cardinals (Paroaria baeri and P. gularis). Emu 117:40–50Google Scholar
  9. Baptista LF (1996) Nature and its nurturing in avian vocal development. In: Kroodsma DE, Miller EH (eds) Ecology and evolution of acoustic communication in birds. Cornell University Press, Ithaca, pp 39–60Google Scholar
  10. Baptista LF, Kroodsma DE (2001) Foreword: Avian bioacoustics: a tribute to Luis Felipe Baptista. In: del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world, vol 6. Lynx Edicions, Barcelona, pp 11–52Google Scholar
  11. Baptista LF, Morton ML (1981) Interspecific song acquisition by a white-crowned sparrow. Auk 98:383–385Google Scholar
  12. Barker FK, Burns KJ, Klicka J, Lanyon SM, Lovette IJ (2015) New insights into new world biogeography: an integrated view from the phylogeny of blackbirds, cardinals, sparrows, tanagers, warblers, and allies. Auk 132:333–348Google Scholar
  13. Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberón J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model 222:1810–1819Google Scholar
  14. Bellamy CC, Scott CD, Altringham JD (2013) Multiscale, presence-only habitat suitability models: fine resolution models for eight bat species. J Appl Ecol 50:892–901Google Scholar
  15. Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer, SunderlandGoogle Scholar
  16. Bryson RW, Faircloth BC, Tsai WLE, McCormack JE, Klicka J (2016) Target enrichment of thousands of ultraconserved elements sheds new light on early relationships within New World sparrows (Aves: Passerellidae). Auk 133:451–458Google Scholar
  17. Burns KJ, Shultz AJ, Title PO, Mason NA, Barker FK, Klicka J, Lanyon SM, Lovette IJ (2014) Phylogenetics and diversification of tanagers (Passeriformes: Thraupidae), the largest radiation of Neotropical songbirds. Mol Phylogenet Evol 75:41–77PubMedGoogle Scholar
  18. Capllonch P, Lobo Allende R, Ortiz D, Ovejero R (2005) La avifauna de la selva de galería en el noreste de Corrientes, Argentina: Biodiversidad, Patrones de Distribución y Migración. Temas de la Biodiversidad del Litoral fluvial argentino II INSUGEO, Miscelánea 14:483–498Google Scholar
  19. Capurro HA, Bucher EH (1988) Lista comentada de las aves del bosque chaqueño de Joaquín V. Gonzalez, Salta, Argentina. Hornero 13:39–46Google Scholar
  20. Chavarría-Pizarro T, Gutiérrez-Espeleta G, Fuchs EJ, Barrantes G (2010) Genetic and morphological variation of the sooty-capped Bush Tanager (Chlorospingus pileatus), a highland endemic species from Costa Rica and Western Panama. Wilson Bull 122:279–287Google Scholar
  21. Codesido M, Bilenca D (2004) Variación estacional de un ensamble de aves en un bosque subtropical semiárido del Chaco Argentino. Biotropica 36:544–554Google Scholar
  22. Collar NJ, Fishpool LDC, del Hoyo J, Pilgrim JD, Seddon N, Spottiswoode CN, Tobias JA (2016) Toward a scoring system for species delimitation: a response to Remsen. J Field Ornithol 87:104–110Google Scholar
  23. Coyne JA, Orr HA (2004) Speciation. Sinauer, SunderlandGoogle Scholar
  24. Cracraft J (1983) Species concepts and speciation analysis. Curr Ornithol 1:159–187Google Scholar
  25. DaCosta JM, Spellman GM, Escalante P, Klicka J (2009) A molecular systematic revision of two historically problematic songbird clades: Aimophila and Pipilo. J Avian Biol 40:206–216Google Scholar
  26. de la Peña MR (2016) Aves Argentinas: descripción, comportamiento, reproducción y distribución. Mimidae a Passeridae. Comunicaciones del Museo Provincial de Ciencias Naturales “Florentino Ameghino” (Nueva Serie) 21:1–564Google Scholar
  27. DeMatteo KE, Rinas MA, Zurano JP, Selleski N, Schneider RG, Arguelles CF (2017) Using niche-modelling and species-specific cost analyses to determine a multispecies corridor in a fragmented landscape. PLoS One 12(8):e0183648. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dinelli L (1918) Notas biológicas sobre las aves del noroeste de la Rep, Argentina. Hornero 1:57–68Google Scholar
  29. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973PubMedPubMedCentralGoogle Scholar
  30. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick J, Lehmann A, Li J, Lohmann LG, Loiselle B, Manion G, Moritz C, Nakamura M, Nakazawa Y, McC.Overton J, Peterson AT, Phillips S, Richardson K, Scachetti-Pereira R, Schapire R, Soberon J, Williams S, Wisz M, Zimmerman N (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151Google Scholar
  31. Falls JB, Kopachena JG (2010) White-throated Sparrow (Zonotrichia albicollis). In: Rodewald PG (ed) The birds of North America. Cornell Lab of Ornithology, Ithaca.
  32. Fernando SP, Irwin DE, Seneviratne SS (2016) Phenotypic and genetic analysis support distinct species status of the Red-backed Woodpecker (Lesser Sri Lanka Flameback: Dinopium psarodes) of Sri Lanka. Auk 133:497–511Google Scholar
  33. Friedman NR, Remeš V (2017) Ecogeographical gradients in plumage coloration among Australasian songbird clades. Glob Ecol Biogeogr 26:261–274Google Scholar
  34. Gould J (1839) Part 3, Birds. In: Darwin C (ed) The zoology of the voyage of H. M. S. Beagle. Smith, Elder and Co, LondonGoogle Scholar
  35. Hellmayr C (1912) Bemerkungen über eine wenig bekannte neotropische Ammer (Zonotrichia strigiceps Gould). Verh Orn Ges Bay 11:187–190Google Scholar
  36. Hellmayr C (1938) Catalogue of birds of the Americas and the adjacent islands. Field Mus Nat Hist Zool Ser 13 (pt. 11).
  37. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978Google Scholar
  38. Holzmann I, Agostini I, DeMatteo K, Areta JI, Merino ML, Di Bitetti MS (2015) Using species distribution modeling to assess factors that determine the distribution of two parapatric howlers (Alouatta spp.) in South America. Int J Primatol 36:18–32Google Scholar
  39. Hoy G (1971) Über Brutbiologie und Eier einiger Vögel aus Nordwest-Argentinien II. J Ornithol 112:158–163Google Scholar
  40. Irwin DE, Irwin JH, Price TD (2001) Ring species as bridges between microevolution and speciation. Genetica 112–113:223–243PubMedGoogle Scholar
  41. Jaramillo A (2011) Genus Rhynchospiza (species accounts). In: del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E (eds) Handbook of the birds of the world, vol 16. Lynx Edicions, Barcelona, pp 565–566Google Scholar
  42. Jordan EA, Areta JI, Holzmann I (2018) Mate recognition systems and species limits in a warbling-finch complex (Poospiza nigrorufa/whitii). Emu 117:344–358Google Scholar
  43. Klicka J, Spellman GM (2007) A molecular evaluation of the North American “Grassland” Sparrow clade. Auk 124:537–551Google Scholar
  44. Kramer-Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, Stillfried M, Heckmann I, Scharf AK, Augeri DM, Cheyne SM, Hearn AJ, Ross J, Macdonald DW, Mathai J, Eaton J, Marshall AJ, Semiadi G, Rustam R, Bernard H, Alfred R, Samejima H, Duckworth JW, Breitenmoser-Wuersten C, Belant JL, Hofer H, Wilting A (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19:1366–1379Google Scholar
  45. Kratter AW, Sillett TS, Chesser RT, O’Neill JP, Parker TA III, Castillo A (1993) Avifauna of a Chaco locality in Bolivia. Wilson Bull 105:114–141Google Scholar
  46. Kroodsma DE, Pickert R (1984) Repertoire size, auditory templates, and selective vocal learning in songbirds. Anim Behav 32:395–399Google Scholar
  47. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874Google Scholar
  48. Liebers D, de Knijff P, Helbig AJ (2004) The herring gull complex is not a ring species. Proc R Soc Lond B 271:893–901Google Scholar
  49. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393Google Scholar
  50. Marateo G, Povedano H, Alonso J (2009) Inventario de las aves del Parque Nacional El Palmar, Argentina. Cotinga 31:47–60Google Scholar
  51. Marler P (1970) A comparative approach to vocal learning: song development in white-crowned sparrows. J Comp Physiol Psychol Monogr 71:1–25Google Scholar
  52. Marshall JT (1964) Voice in communication and relationships among brown towhees. Condor 66:345–356Google Scholar
  53. Mayr E (1963) Animal species and evolution. Harvard University Press, CambridgeGoogle Scholar
  54. Merow C, Smith MJ, Silander JA Jr (2013) A practical guide to MaxEnt for modeling species distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069Google Scholar
  55. Mlíkovský J (2009) Types of birds in the collections of the Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland. Part 3: South American birds. J Natl Mus (Prague) Nat Hist Ser 178:17–180Google Scholar
  56. Navas JR (1965) Notas sobre Aimophila strigiceps y su distribución geográfica. Hornero 10:215–224Google Scholar
  57. Omland KE, Lanyon SM (2000) Reconstructing plumage evolution in orioles (Icterus): repeated convergence and reversal in patterns. Evolution 54:2119–2133PubMedGoogle Scholar
  58. Paterson HEH (1980) A comment on “mate recognition systems”. Evolution 34:330–331PubMedGoogle Scholar
  59. Paterson HEH (1985) The recognition concept of species. In: Vrba ES (ed) Species and speciation, vol 4. Transvaal Museum Monographs, Transvaal Museum, Johannesburg, pp 21–29Google Scholar
  60. Paynter RA (1967) Notes on the Emberizine sparrow Rhynchospiza stolzmanni. Breviora 278:1–6Google Scholar
  61. Perktaş U, Gosler AG (2010) Measurement error revisited: its importance for the analysis of size and shape of birds. Acta Ornithol 45:161–172Google Scholar
  62. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259Google Scholar
  63. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256PubMedGoogle Scholar
  64. Price T (2008) Speciation in birds. Roberts & Co, DenverGoogle Scholar
  65. Pryke SR, Griffith SC (2009) Postzygotic genetic incompatibility between sympatric color morphs. Evolution 63:793–798PubMedGoogle Scholar
  66. Rambaut A, Drummond A (2007) Tracerv1.4.
  67. Remsen JV Jr (2015) [Review of] HBW and BirdLife international illustrated checklist of the birds of the world. Non-passerines (N. J. Collar and J. del Hoyo, eds.), vol. 1, 903 pp. J Field Ornithol 86:182–187Google Scholar
  68. Remsen JV Jr (2016) A “rapid assessment program” for assigning species rank? J Field Ornithol 87:110–115Google Scholar
  69. Remsen JV Jr, Areta JI, Cadena CD, Claramunt S, Jaramillo A, Pacheco JF, Pérez-Emán J, Robbins MB, Stiles FG, Stotz DF, Zimmer KJ (2019) A classification of the bird species of South America. American Ornithologists’ Union. Accessed 31 Jul 2019
  70. Ridgely RS, Tudor G (1989) The birds of South America, vol 1. University of Texas Press, AustinGoogle Scholar
  71. Salewski V, Watt C (2017) Bergmann’s rule: a biophysiological rule examined in birds. Oikos 126:161–172Google Scholar
  72. Schwartz P (1975) Solved and unsolved problems in the Sporophila bouvronides/lineola complex (Aves: Emberizidae). Ann Carnegie Mus 45:277–285Google Scholar
  73. Sharpe RB (1888) Catalogue of birds in the British museum, vol XII. Passeriformes–Fringilliformes: Part III. Taylor & Francis, LondonGoogle Scholar
  74. Short LL (1975) A zoogeographic analysis of the South American Chaco avifauna. Bull Am Mus Nat Hist 154:165–352Google Scholar
  75. Short LL (1976) Aimophila strigiceps new to Paraguay. Auk 93:189–190Google Scholar
  76. Slabbekoorn H, Smith TB (2003) Bird song, ecology and speciation. Philos Trans R Soc Lond B 357:493–503Google Scholar
  77. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690Google Scholar
  78. Stattersfield AJ, Crosby MJ, Long MJ, Wege DC (1998) Endemic bird areas of the world: priorities for biodiversity conservation, vol 7. Conservation series. BirdLife International, CambridgeGoogle Scholar
  79. Stein RC (1958) The behavioral, ecological and morphological characteristics of two populations of the Alder Flycatcher, Empidonax traillii (Audubon). N Y State Mus Sci Serv Bull 371:1–63Google Scholar
  80. Storer RW (1955) A preliminary survey of the sparrows of the genus Aimophila. Condor 57:193–201Google Scholar
  81. Taczanowski L (1877) Liste des Oiseaux recueillis en 1876 au nord du Pérou occidental par MM. Jelski et Stolzmann. Proc Zool Soc Lond 1877:319–333Google Scholar
  82. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035PubMedGoogle Scholar
  83. Tobias JA, Seddon N, Spottiswoode CN, Pilgrim JD, Fishpool LDC, Collar NJ (2010) Quantitative criteria for species delimitation. Ibis 152:724–746Google Scholar
  84. Ülker ED, Tavşanoğlu C, Perktaş U (2018) Ecological niche modelling of pedunculate oak (Quercus robur) supports the ‘expansion–contraction’ model of Pleistocene biogeography. Biol J Lin Soc 123:338–347Google Scholar
  85. Williams MD (1981) First description of the nest, eggs, and young of the Tumbes Sparrow (Aimophila [Rhynchospiza] stolzmanni). Condor 83:83–84Google Scholar
  86. Wolf LJ (1977) Species relationships in the avian genus Aimophila. Ornithol Monogr 23:1–220Google Scholar
  87. Zimmer KJ, Whittaker A (2000) The Rufous Cachalote (Furnariidae: Pseudoseisura) is two species. Condor 102:409–422Google Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2019

Authors and Affiliations

  1. 1.Instituto de Bio y Geociencias del Noroeste Argentino (IBIGEO-CONICET), Laboratorio de EcologíaComportamiento y Sonidos Naturales (ECOSON)Rosario de LermaArgentina
  2. 2.Villa MaríaArgentina
  3. 3.Museum of Natural ScienceLouisiana State UniversityBaton RougeUSA
  4. 4.Burke Museum of Natural History and Culture and Department of BiologyUniversity of WashingtonSeattleUSA

Personalised recommendations