Advertisement

Body size and genetic variation in the White-tipped Plantcutter (Phytotoma rutila: Cotingidae) suggest ecological divergence across the Chaco–Andes dry forest belt

  • María José Rodríguez-Cajarville
  • Luciano Calderón
  • Pablo Luis Tubaro
  • Gustavo Sebastián CabanneEmail author
Original Article

Abstract

Dry forests characterize many of the biomes of southern South America and the Andes, such as the Chaco and the inter-Andean valley forests, which form a continuous belt (Chaco–Andes dry forest belt). Some of the taxa that inhabit this forest belt present genetic and phenotypic differentiation between edges of the region, which suggests the action of divergent evolutionary processes between forests (i.e., parapatric divergence). In order to test this hypothesis, we studied the morphological and phylogeographic variation of the White-tipped Plantcutter Phytotoma rutila (Cotingidae) and evaluated predictions of genetic and morphological evolutionary processes (e.g., local adaptation). The results supported that the environmental gradient along the Chaco–Andes dry forests might be promoting diversification because we found that body size of the White-tipped Plantcutter varied according to a step cline related to altitude, and thus parapatric processes might be responsible for this pattern. There are other taxa co-distributed across the study region presenting similar patterns of geographic variation, which suggests the action of concerted evolutionary phenomena in the Chaco–Andes dry forest.

Keywords

Phenotypic divergence Natural selection Normal mixture models Divergent evolution Sibling lineages Geographic phenotypic variation 

Zusammenfassung

Körpergröße und genetische Variation beim Zweibinden-Pflanzenmäher ( Phytotoma rutila : Cotingidae) deuten auf ökologische Divergenz entlang des Trockenwaldgürtels der Chaco-Anden.

Trockenwälder kennzeichnen einen Großteil der Biome des südlichen Südamerikas und der Anden. So bilden zum Beispiel die Wälder des Chaco und der Täler innerhalb der Anden-Ketten einen durchgängigen Gürtel (Trockenwaldgürtel der Chaco-Anden). Einige Taxa, die diesen Waldgürtel besiedeln, zeigen genetische und phänotypische Unterschiede zwischen den Rändern der Region, was auf den Einfluss von divergierenden evolutionären Prozessen zwischen den Waldbereichen hindeutet (d.h. parapatrische Divergenz). Um diese Hypothese zu prüfen, untersuchten wir die morphologische und phylogeographische Variation beim Zweibinden-Pflanzenmäher Phytotoma rutila (Cotingidae) und überprüften die Vorhersagen der genetischen und morphologischen Evolutionsprozesse (z.B. lokale Anpassung). Unsere Ergebnisse zeigten, dass sich möglicherweise aufgrund der parapatrischen Prozesse die Körpergröße der Zweibinden-Pflanzenmäher stufenweise entlang des Höhengradienten änderte. Dies unterstützt die Hypothese, dass der Umweltgradient entlang der Trockenwälder der Chaco-Anden die Diversifikation fördern könnte. Weitere Taxa, die über das Untersuchungsgebiet verbreitet sind, zeigten ein ähnliches geographisches Variationsmuster, was auf das Wirken konzentrierter evolutionärer Phänomene in den Trockenwäldern der Chaco-Anden hinweist.

Notes

Acknowledgements

We thank the following institutions for granting collection permits: Administración de Parques Nacionales (Argentina) and environmental authorities of Bolivia. Also, we would like to thank the curators of the following institutions and/or ornithological collections for granting access to their specimen collections: the Ornithology Collection of the American Museum of Natural History, the Cornell Lab of Ornithology, the Ornithology Collection of the University of Washington Burke Museum, the Colección Boliviana de Fauna (Colección de Ornitología), the Colección de Ornitología del Instituto Argentino de Investigaciones de Zonas Áridas and the División de Ornitología del Museo Argentino de Ciencias Naturales. This study was funded by Consejo Nacional de Investigaciones Científicas y Tecnológicas (PIP 2011 276, PIP 2015 637, Coop. Int. CNPq-CONICET, as well as Fondo IBOL Argentina), and the Agencia Nacional de Promoción Científica y Tecnológica, Argentina (Coop. Int. CAPES-MINCyT, PICT 2012 1924 and PICT 2014 2154).

Supplementary material

10336_2019_1694_MOESM1_ESM.pdf (1008 kb)
Supplementary material 1 (PDF 1008 kb)

References

  1. Antoniazza S, Burri R, Fumagalli L et al (2010) Local adaptation maintains clinal variation in melanin-based coloration of European Barn Owls (Tyto alba). Evolution 64:1944–1954.  https://doi.org/10.1111/j.1558-5646.2010.00969.x CrossRefPubMedGoogle Scholar
  2. Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744.  https://doi.org/10.1046/j.1365-294X.2003.02063.x CrossRefPubMedGoogle Scholar
  3. Bandelt H, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefGoogle Scholar
  4. Bertrand JAM, Delahaie B, Bourgeois YXC et al (2016) The role of selection and historical factors in driving population differentiation along an elevational gradient in an island bird. J Evol Biol 29:824–836.  https://doi.org/10.1111/jeb.12829 CrossRefPubMedGoogle Scholar
  5. Berv JS, Prum RO (2014) A comprehensive multilocus phylogeny of the Neotropical cotingas (Cotingidae, Aves) with a comparative evolutionary analysis of breeding system and plumage dimorphism and a revised phylogenetic classification. Mol Phylogenet Evol 81:120–136.  https://doi.org/10.1016/j.ympev.2014.09.001 CrossRefPubMedGoogle Scholar
  6. Blackburn TM, Ruggiero A (2001) Latitude, elevation and body mass variation in Andean passerine birds. Glob Ecol Biogeogr 10:245–259.  https://doi.org/10.1046/j.1466-822X.2001.00237.x CrossRefGoogle Scholar
  7. Blackburn TM, Gaston KJ, Loder N (2008) Geographic gradients in body size: a clarification of Bergmann’s rule. Divers Distrib 5:165–174.  https://doi.org/10.1046/j.1472-4642.1999.00046.x CrossRefGoogle Scholar
  8. Borge T, Webster M, Anderson G, Saetre G (2008) Contrasting patterns of polymorphism and divergence on the Z chromosome and autosomes in two Ficedula flycatcher species. Genetics 171:1861–1873CrossRefGoogle Scholar
  9. Brommer JE (2011) Whither P ST? The approximation of QST by P ST in evolutionary and conservation biology. J Evol Biol 24:1160–1168.  https://doi.org/10.1111/j.1420-9101.2011.02268.x CrossRefPubMedGoogle Scholar
  10. Brommer JE, Hanski IK, Kekkonen J, Väisänen RA (2014) Size differentiation in Finnish House Sparrows follows Bergmann’s rule with evidence of local adaptation. J Evol Biol 27:737–747.  https://doi.org/10.1111/jeb.12342 CrossRefPubMedGoogle Scholar
  11. Brooke M, Walther B, Snow D (2004) Family Cotingidae. In: Del Hoyo J, Elliot A, Christie D (eds) Handbook of the birds of the word, vol 9. Cotingas to pipits and wagtails. Lynx, Barcelona, pp 32–109Google Scholar
  12. Bulgarella M, Peters JL, Kopuchian C et al (2012) Multilocus coalescent analysis of haemoglobin differentiation between low- and high-altitude populations of Crested Ducks (Lophonetta specularioides). Mol Ecol 21:350–368.  https://doi.org/10.1111/j.1365-294X.2011.05400.x CrossRefPubMedGoogle Scholar
  13. Cabrera AL (1976) Regiones Fitogeográficas Argentinas. Enciclopedia Argentina de Agricultura y Jardinería. ACME, Buenos AiresGoogle Scholar
  14. Cadena CD, Zapata F, Jiménez I (2017) Issues and perspectives in species delimitation using phenotypic data: Atlantean evolution in Darwin’s Finches. Syst Biol 67:181–194.  https://doi.org/10.1093/sysbio/syx071 CrossRefGoogle Scholar
  15. Chang W-C (1983) On using principal components before separating a mixture of two multivariate normal distributions. J R Stat Soc Ser C (Appl Stat) 32:267–275Google Scholar
  16. Cheng L, Connor TR, Siren J et al (2013) Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol Biol Evol 30:1224–1228.  https://doi.org/10.1093/molbev/mst028 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cheviron ZA, Natarajan C, Projecto-Garcia J et al (2014) Integrating evolutionary and functional tests of adaptive hypotheses: a case study of altitudinal differentiation in hemoglobin function in an Andean. Mol Biol Evol 31:2948–2962.  https://doi.org/10.1093/molbev/msu234 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Clapperton CM (1993) Nature of environmental changes in South America at the Last Glacial Maximum. Palaeogeogr Palaeoclimatol Palaeoecol 101:189–208.  https://doi.org/10.1016/0031-0182(93)90012-8 CrossRefGoogle Scholar
  19. Derryberry EP, Claramunt S, Derryberry G et al (2011) Lineage diversification and morphological evolution in a large-scale continental radiation: the Neotropical Ovenbirds and woodcreepers (Aves: Furnariidae). Evolution 65:2973–2986.  https://doi.org/10.1111/j.1558-5646.2011.01374.x CrossRefPubMedGoogle Scholar
  20. Edwards DL, Knowles LL (2014) Species detection and individual assignment in species delimitation: can integrative data increase efficacy? Proc R Soc B Biol Sci 281:20132765.  https://doi.org/10.1098/rspb.2013.2765 CrossRefGoogle Scholar
  21. Ellegren H (2007) Molecular evolutionary genomics of birds. Cytogenet Genome Res 117:120–130CrossRefGoogle Scholar
  22. Endler JA (1977) Geographic variation, speciation, and clines. Monogr Popul Biol Biol 10:1–246Google Scholar
  23. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567.  https://doi.org/10.1111/j.1755-0998.2010.02847.x CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ezard TH, Pearson PN, Purvis A (2010) Algorithmic approaches to aid species’ delimitation in multidimensional morphospace. BMC Evol Biol 10:175.  https://doi.org/10.1186/1471-2148-10-175 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edinburgh 52:399–433CrossRefGoogle Scholar
  26. Fjeldså J, Zuccon D, Irestedt M et al (2003) Sapayoa aenigma: a New World representative of “Old World suboscines”. Proc R Soc B Biol Sci 270(Suppl):S238–S241.  https://doi.org/10.1098/rsbl.2003.0075 CrossRefGoogle Scholar
  27. Fjelsdå J, Bowie RCK, Rahbek C (2012) The role of mountain ranges in the diversification of birds. Annu Rev Ecol Evol Syst 43:249–265.  https://doi.org/10.1146/annurev-ecolsys-102710-145113 CrossRefGoogle Scholar
  28. Friesen VL, Congdon BC, Walsh HE, Birt TP (1997) Intron variation in Marbled Murrelets detected using analyses of single-stranded conformational polymorphisms. Mol Ecol 6:1047–1058.  https://doi.org/10.1046/j.1365-294X.1997.00277.x CrossRefPubMedGoogle Scholar
  29. Fu Y (1997) Statistical test of neutrality against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedPubMedCentralGoogle Scholar
  30. Gaston KJ, Blackburn TM (eds) (2000) Pattern and process in macroecology. Blackwell, MaldenGoogle Scholar
  31. Griffiths R, Double M, Orr K, Dawson R (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075CrossRefGoogle Scholar
  32. Guillot G, Renaud S, Ledevin R et al (2012) A unifying model for the analysis of phenotypic, genetic, and geographic data. Syst Biol 61:897–911.  https://doi.org/10.1093/sysbio/sys038 CrossRefPubMedGoogle Scholar
  33. Herzog SK, Terrill RS, Jahn AE et al (2016) Birds of Bolivia: field guide. Asociación Armonía, Santa Cruz de la SierraGoogle Scholar
  34. Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760.  https://doi.org/10.1534/genetics.103.024182 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Huey RB, Hertz PE, Sinervo B (2003) Behavioral drive versus behavioral inertia in evolution: a null model approach. Am Nat 161:357–366.  https://doi.org/10.1086/346135 CrossRefPubMedGoogle Scholar
  36. James FC (1970) Geographic size variation in birds and its relationship to climate. Ecology 51:365–390CrossRefGoogle Scholar
  37. Johansson US, Irestedt MI, Parsons TJ, Ericson PGP (2002) Basal phylogeny of the Tyrannoidea based on comparisons of cytochrome b and exons of nuclear c-myc and RAG-e genes. Auk 119:984–995CrossRefGoogle Scholar
  38. Karhunen M, Merilä J, Leinonen T et al (2013) driftsel: an R package for detecting signals of natural selection in quantitative traits. Mol Ecol Resour 13:746–754.  https://doi.org/10.1111/1755-0998.12111 CrossRefPubMedGoogle Scholar
  39. Kekkonen J, Jensen H, Brommer JE (2012) Morphometric differentiation across House Sparrow Passer domesticus populations in Finland in comparison with the neutral expectation for divergence. Ibis 154:846–857CrossRefGoogle Scholar
  40. Laaksonen T, Sirkiä PM, Calhim S et al (2015) Sympatric divergence and clinal variation in multiple coloration traits of Ficedula flycatchers. J Evol Biol 28:779–790.  https://doi.org/10.1111/jeb.12604 CrossRefPubMedGoogle Scholar
  41. Lehtonen PK, Laaksonen T, Artemyev AV et al (2009) Geographic patterns of genetic differentiation and plumage colour variation are different in the Pied Flycatcher (Ficedula hypoleuca). Mol Ecol 18:4463–4476.  https://doi.org/10.1111/j.1365-294X.2009.04364.x CrossRefPubMedGoogle Scholar
  42. Leinonen T, Cano JM, Mäkinen H, Merilä J (2006) Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of Threespine Sticklebacks. J Evol Biol 19:1803–1812.  https://doi.org/10.1111/j.1420-9101.2006.01182.x CrossRefPubMedGoogle Scholar
  43. Leinonen T, O’Hara RB, Cano JM, Merilä J (2008) Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. J Evol Biol 21:1–17.  https://doi.org/10.1111/j.1420-9101.2007.01445.x CrossRefPubMedGoogle Scholar
  44. Librado P, Rozas J (2009) DNASP version 5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefGoogle Scholar
  45. Lougheed S, Freeland J, Handford P, Boag P (2000) A molecular phylogeny of Warbling-Finches (Poospiza): paraphyly in a Neotropical emberizid genus. Mol Phylogenet Evol 17:367–378CrossRefGoogle Scholar
  46. Lutz P, Longmuir I, Schmidtnielsen K (1974) Oxygen affinity of bird blood. Respir Physiol 20:325–330CrossRefGoogle Scholar
  47. Mayr E (1942) Systematics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  48. McCracken KG, Barger CP, Bulgarella M et al (2009) Signatures of high-altitude adaptation in the major hemoglobin of five species of Andean Dabbling Ducks. Am Nat 174:631–650.  https://doi.org/10.1086/606020 CrossRefPubMedGoogle Scholar
  49. McLachlan G, Peel DA (2000) Finite mixture models. Wiley, Hoboken, NJCrossRefGoogle Scholar
  50. Meiri S, Dayan T (2003) On the validity of Bergmann’s rule. J Biogeogr 30:331–351.  https://doi.org/10.1046/j.1365-2699.2003.00837.x CrossRefGoogle Scholar
  51. Merilä J, Crnokrak P (2001) Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol 14:892–903.  https://doi.org/10.1046/j.1420-9101.2001.00348.x CrossRefGoogle Scholar
  52. Monge C, Leon-Velarde F (1991) Physiological adaptation to high altitude: oxygen transport in mammals and birds. Physiol Rev 71:1135–1172CrossRefGoogle Scholar
  53. Nachman MW (1998) Deleterious mutations in animal mitochondrial DNA. Genetica. Springer, Dordrecht, pp 61–69Google Scholar
  54. Nylander J (2004) MrModeltest version 2. Program distributed by the authorGoogle Scholar
  55. Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938CrossRefGoogle Scholar
  56. Paz-Vinas I, Quéméré E, Chikhi L et al (2013) The demographic history of populations experiencing asymmetric gene flow: combining simulated and empirical data. Mol Ecol 22:3279–3291.  https://doi.org/10.1111/mec.12321 CrossRefPubMedGoogle Scholar
  57. Peacock AJ (1998) Oxygen at high altitude. Br Med J 317:1063–1066CrossRefGoogle Scholar
  58. Pennington RT, Prado DE, Pendry CA, Botanic R (2000) Neotropical seasonally dry forests and quaternary vegetation changes. J Biogeogr 27:261–273CrossRefGoogle Scholar
  59. Porter SC (2000) Snowline depression in the tropics during the Last Glaciation. Quat Sci Rev 20:1067–1091.  https://doi.org/10.1016/S0277-3791(00)00178-5 CrossRefGoogle Scholar
  60. Prado DE (1993) What is the Gran Chaco vegetation in South America? I. A review. Contribution to the study of flora and vegetation of the Chaco. Candollera 48:145–172Google Scholar
  61. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  62. Ridgely RS, Tudor G (1994) The birds of South America, volume 2: the suboscine passerines. University of Texas Press, AustinGoogle Scholar
  63. Ridgely RS, Tudor G (2009) Field guide to the songbirds of South America: the Passerines. University of Texas Press, AustinGoogle Scholar
  64. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.  https://doi.org/10.1093/bioinformatics/btg180 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352.  https://doi.org/10.1111/j.1461-0248.2004.00715.x CrossRefGoogle Scholar
  66. Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, OxfordGoogle Scholar
  67. Schluter D (2001) Ecology and the origin of species. Trees 16:372–380Google Scholar
  68. Schmidt-Nielsen K, Larimer J (1958) Oxygen dissociation curves of mammalian to body size. Am J Physiol 195:424–428CrossRefGoogle Scholar
  69. Schwarz G (1978) Estimating the dimension of a model. Ann Stat.  https://doi.org/10.1214/aos/1176344136 CrossRefGoogle Scholar
  70. Scrucca L, Raftery AE (2018) clustvarsel: a package implementing variable selection for Gaussian model-based clustering in R. J Stat Softw.  https://doi.org/10.18637/jss.v084.i01 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Scrucca L, Fop M, Murphy TB, Raftery AE (2016) mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R J 8:205–233CrossRefGoogle Scholar
  72. Seeholzer GF, Brumfield RT (2017) Isolation-by-distance, not incipient ecological speciation, explains genetic differentiation in an Andean songbird (Aves: Furnariidae: Cranioleuca antisiensis, Line-cheeked Spinetail) despite near three-fold body size change across an environmental gradient. Mol Ecol 27:279–296.  https://doi.org/10.1111/mec.14429 CrossRefPubMedGoogle Scholar
  73. Sobel JM, Chen GF, Watt LR, Schemske DW (2010) The biology of speciation. Evolution 64:295–315.  https://doi.org/10.1111/j.1558-5646.2009.00877.x CrossRefPubMedPubMedCentralGoogle Scholar
  74. Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169CrossRefGoogle Scholar
  75. Sundqvist L, Keenan K, Zackrisson M et al (2016) Directional genetic differentiation and relative migration. Ecol Evol 6:3461–3475.  https://doi.org/10.1002/ece3.2096 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Tajima F (1989) Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  77. Tucker VA (1968) Respiratory physiology of House Sparrows in relation to high-altitude flight. J Exp Biol 48:55–66PubMedGoogle Scholar
  78. Tufts DM, Revsbech IG, Cheviron ZA et al (2013) Phenotypic plasticity in blood—oxygen transport in highland and lowland deer mice. J Exp Biol 216:1167–1173.  https://doi.org/10.1242/jeb.079848 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Visschedijk AHJ (1980) Effects of barometric pressure and abnormal gas mixtures on gaseous exchange by the avian embryo. 1. Am Zool 20:469–476CrossRefGoogle Scholar
  80. Von Holdt BM, Kartzinel RY, Huber CD et al (2018) Growth factor gene IGF1 is associated with bill size in the Black-bellied Seedcracker Pyrenestes ostrinus. Nat Commun.  https://doi.org/10.1038/s41467-018-07374-9 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Weir J, Schluter D (2008) Calibrating the avian molecular clock. Mol Ecol 17:2321–2328CrossRefGoogle Scholar
  82. Whitlock MC (2008) Evolutionary inference from Q ST. Mol Ecol 17:1885–1896.  https://doi.org/10.1111/j.1365-294X.2008.03712.x CrossRefPubMedGoogle Scholar
  83. Wilson RE, Peters JL, McCracken KG (2013) Genetic and phenotypic divergence between low- and high-altitude populations of two recently diverged Cinnamon Teal subspecies. Evolution 67:170–184.  https://doi.org/10.1111/j.1558-5646.2012.01740.x CrossRefPubMedGoogle Scholar
  84. Wright S (1943) Isolation by distance. Genetics 28:114–138PubMedPubMedCentralGoogle Scholar
  85. Zink RM, Remsen JV (1986) Evolutionary processes and patterns of geographic variation in birds. Curr Ornithol 4:1–69Google Scholar
  86. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD Diss Univ Texas Austin. http//:www.zo.utexas.edu/faculty/antisense/Garli.html. Accessed 10 Jan 2016

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2019

Authors and Affiliations

  1. 1.Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”-CONICETBuenos AiresArgentina
  2. 2.Instituto de Biología Agrícola de Mendoza-CONICET-UNCUYOLuján de CuyoArgentina

Personalised recommendations