Journal of Ornithology

, Volume 160, Issue 4, pp 1077–1085 | Cite as

Stable isotopes reveal the common winter moult of central rectrices in a long-distance migrant songbird

  • Frédéric JiguetEmail author
  • Kevin J. Kardynal
  • Markus Piha
  • Tuomas Seimola
  • José Luis Copete
  • Michel Alexandre Czajkowski
  • Valery Dombrovski
  • Ron Efrat
  • Simonas Minkevicius
  • Marko Raković
  • Michał Skierczyǹski
  • Keith A. Hobson
Original Article


By analysing the deuterium concentration in the scapulars and rectrices (δ2Hf) of breeding and spring migrating Ortolan Buntings (Emberiza hortulana), we found a high correlation attesting that spring body and central rectrices have grown in similar isotopic environments. Furthermore, we failed to find a correlation between δ2Hf of the rectrices and the amount-weighted growing season precipitation δ2Hp of sites where we captured the birds. Winter-grown body coverts and rectrices displayed similar probabilistic assignments to origin. Further examination of 76 tails of breeding birds captured in Finland in May–June confirmed that breeding birds wear recently moulted central rectrices. The body coverts are known to moult during the winter partial moult in that species, but the rectrices have been reported to moult only once a year, during the complete post-breeding moult occurring on the breeding grounds in summer. Here, we reveal the common replacement of the central pair in winter, as well. The winter tail moult could occur beyond the central pair in some individuals, but this has still to be confirmed or refuted, by, e.g., further isotopic investigations.


Deuterium Emberiza hortulana Moulting strategy Ortolan Bunting Tail feather 


Stabile Isotope belegen eine verbreitete Wintermauser der mittleren Steuerfedern bei einem langstreckenziehenden Singvogel

Bei der Analyse der Deuteriumkonzentration (δ2Hf) in den Schulter- und Steuerfedern von Ortolanen Emberiza hortulana zur Brutzeit und auf dem Frühjahrszug fanden wir eine starke Korrelation, welche belegt, dass die im Frühling getragenen Körper- und mittleren Steuerfedern in isotopisch ähnlicher Umgebung gewachsen waren. Des Weiteren fanden wir keine Korrelation zwischen dem δ2Hf-Wert der Steuerfedern und dem nach Menge gewichteten δ2Hp-Wert des Niederschlags während der Wachstumsperiode an den Orten, an denen die Vögel gefangen wurden. Die im Winter vermauserten Körperdecken und Steuerfedern zeigten ähnliche Zuordnungen zu wahrscheinlichen Herkunftsgebieten. Die weitere Untersuchung von 76 Steuern von zwischen Mai-Juni in Finnland gefangenen Brutvögeln bestätigte, dass Brutvögel frisch vermauserte mittlere Steuerfedern trugen. Es ist bekannt, dass diese Vogelart das Körperdeckgefieder während der Winterteilmauser erneuert, allerdings hieß es, dass die Steuerfedern nur einmal jährlich, während der Sommerkomplettmauser im Brutgebiet, gemausert würden. Wir belegen hier, dass das mittlere Paar häufig auch im Winter vermausert wird. Bei manchen Individuen könnte die Steuerfedermauser außer dem mittleren auch weitere Federpaare umfassen; dies muss aber noch z. B. durch weitere Isotopenstudien bestätigt oder widerlegt werden.



We are grateful to all our colleagues who helped in the field work, monitoring and capturing of the buntings. We thank two anonymous reviewers who provided important insights to clarify the moult patterns of buntings. This research was funded by Conseil Général des Landes, Région Aquitaine, Région Nouvelle Aquitaine, Fédération Départementale des Chasseurs des Landes (FDC40), Association Départementale des Chasses Traditionnelles à la Matole (ADCTM), French Ministry in charge of the Environment. Environment and Climate Change Canada supported the stable isotope analyses through an operating grant to Keith Hobson. The Polish National Science Centre (NCN) partially promoted the research in Poland—MS was funded by Grant no. N N304 0198 40.

Supplementary material

10336_2019_1671_MOESM1_ESM.docx (118 kb)
Supplementary material 1 (DOCX 117 kb)


  1. Barta Z, Houston AI, McNamara JM, Welham RK, Hedenström A, Weber TP, Feró O (2006) Annual routines of non-migratory birds: optimal moult strategies. Oikos 112:580–593CrossRefGoogle Scholar
  2. Barta Z, McNamara JM, Houston AI, Weber TP, Hedenström A, Feró O (2008) Optimal moult strategies in migratory birds. Philos Trans R Soc Lond B 363:211–229CrossRefGoogle Scholar
  3. Beltran RS, Burns JM, Breed GA (2018) Convergence of biannual moulting strategies across birds and mammals. Proc R Soc Lond B 285:20180318. CrossRefGoogle Scholar
  4. BirdLife International, NatureServe (2018) Version 1.0. BirdLife International, Cambridge, UK and NatureServe, Arlington, USAGoogle Scholar
  5. Bollen KA, Jackman RW (1990) Regression diagnostics: an expository treatment of outliers and influential cases. In: Fox J, Long JS (eds) Modern methods of data analysis. Sage, Newbury Park, pp 257–291Google Scholar
  6. Bowen GJ, Wassenaar LI, Hobson KA (2005) Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143:337–348CrossRefGoogle Scholar
  7. Bridge ES (2008) How does imping affect wing performance? J Wildl Rehabil 29:4–9Google Scholar
  8. Cook RD (1977) Detection of influential observations in linear regression. Technometrics 19:15–18Google Scholar
  9. Cramp S, Perrins CM (1994) Ortolan Bunting Emberiza hortulana. Handbook of the birds of Europe, the Middle East end North Africa—the birds of the Western Paleartic—volume IX—buntings and new world warblers. Oxford University Press, Oxford, pp 209–223Google Scholar
  10. Dale S (2001) Female-biased dispersal, low female recruitment, unpaired males, and the extinction of small and isolated bird populations. Oikos 92:344–356CrossRefGoogle Scholar
  11. Dale S (2016) Cost of reproduction: a comparison of survival rates of breeding and non-breeding male Ortolan Buntings. J Avian Biol 47:583–588CrossRefGoogle Scholar
  12. Danner RM, Greenberg RS, Danner JE, Walters JR (2015) Winter food limits timing of pre-alternate moult in a short-distance migratory bird. Funct Ecol 29:259–267CrossRefGoogle Scholar
  13. Demongin L (2013) Guide d’identification des oiseaux en main. Baume-les-Dames, FranceGoogle Scholar
  14. Gutiérrez-Expósito C, Ramírez F, Afán I, Forero MG, Hobson KA (2015) Toward a Deuterium feather isoscape for sub-saharan Africa: progress, challenges and the path ahead. PLoS One 10(9):e0135938. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hedenström A, Bensch S, Hasselquist D, Lindström Å, Åkesson S, Pearson DJ (1992) Split moult: stress or strategy? Ringing Migr 13:179–180CrossRefGoogle Scholar
  16. Hobson KA, Wassenaar LI (2018) Tracking animal migration using stable isotopes, 2nd edn. Academic, LondonGoogle Scholar
  17. Hobson KA, Van Wilgenburg SL, Wassenaar LI, Larson K (2012) Linking hydrogen (δ 2H) isotopes in feathers and precipitation: sources of variance and consequences for assignment to isoscapes. PLoS ONE 7(4):e35137CrossRefGoogle Scholar
  18. Holmgren N, Hedenström A (1995) The scheduling of molt in migratory birds. J Evol Ecol 9:354–368CrossRefGoogle Scholar
  19. Inger R, Bearhop S (2008) Applications of stable isotope analyses to avian ecology. Ibis 150:447–461CrossRefGoogle Scholar
  20. Jenni L, Winkler R (1994) Moult and ageing of European passerines. A&C Black, London. ISBN 0-12-384150-XGoogle Scholar
  21. Jiguet F, Robert A, Lorrillière R, Hobson KA, Kardynal KJ, Arlettaz R, Bairlein F, Belik V, Bernardy P, Copete JL, Czajkowski MA, Dale S, Dombrovski V, Ducros D, Efrat R, Elts J, Ferrand Y, Marja R, Minkevicius S, Olsson P, Pérez M, Piha M, Raković M, Schmaljohann H, Seimola T, Selstam G, Siblet J-P, Skierczyǹski M, Sokolov A, Sondell J, Moussy C (2019) Unravelling migration connectivity reveals unsustainable hunting of the declining ortolan bunting. Sci Adv 5:eaau2642CrossRefGoogle Scholar
  22. Kiat Y, Izhaki I, Sapir N (2018) The effects of long-distance migration on the evolution of moult strategies in Western-Palearctic passerines. Biol Rev Camb Philos Soc. CrossRefPubMedGoogle Scholar
  23. Lindström Å, Pearson DJ, Hasselquist D, Hedenström A, Bensch S, Akesson S (1993) The moult of Barred Warblers Sylvia nisoria in Kenya—evidence for a split wing-moult pattern initiated during the birds’ first winter. Ibis 135:403–409CrossRefGoogle Scholar
  24. Marquiss M, Newton I, Hobson KA, Kolbeinsson Y (2012) Origins of irruptive migrations by Common Crossbills Loxia curvirostra into northwestern Europe revealed by stable isotope analysis. Ibis 154:400–409CrossRefGoogle Scholar
  25. Merilä J, Hemborg C (2000) Fitness and feather wear in the collared flycatcher Ficedula albicollis. J Avian Biol 31:504–510CrossRefGoogle Scholar
  26. Moussy C, Arlettaz R, Copete JL, Dale S, Dombrovski V, Elts J, Lorrillière R, Marja R, Pasquet E, Piha M, Rakovic M, Seimola T, Selstam G, Jiguet F (2018) The genetic structure of the European breeding populations of a declining farmland bird, the ortolan bunting (Emberiza hortulana), reveals conservation priorities. Conserv Genet 19:909–922CrossRefGoogle Scholar
  27. Neto JM, Newton J, Gosler AG, Perrins CM (2006) Using stable isotope analysis to determine the winter moult extent in migratory birds: the complex moult of Savi’s warblers Locustella luscinioides. J Avian Biol 37:117–124CrossRefGoogle Scholar
  28. Nikolaus G, Pearson D (1991) The seasonal separation of primary and secondary moult in Palaearctic passerine migrants on the Sudan coast. Ringing Migr 12:46–47CrossRefGoogle Scholar
  29. Procházka P, Van Wilgenburg SL, Neto JM, Yosef R, Hobson KA (2013) Using stable hydrogen isotopes (δ 2H) and ring recoveries to trace natal origins in a Eurasian passerine with a migratory divide. J Avian Biol 44:541–550CrossRefGoogle Scholar
  30. Royle JA, Rubenstein DR (2004) The role of species abundance in determining breeding origins of migratory birds with stable isotopes. Ecol Appl 14:1780–1788CrossRefGoogle Scholar
  31. Svensson L (1992) Identification guide to european passerines, 4th edn. British Trust for Ornithology, StockholmGoogle Scholar
  32. Underhill L, Prys-Jones RP, Dowsett R, Herroelen P, Johnson DN, Lawn MR, Norman SC, Pearson DJ, Tree A (1992) The biannual primary moult of Willow Warblers Phylloscopus trochilus.Europe and Africa. Ibis 134:286–297CrossRefGoogle Scholar
  33. Van der Meer T, te Grotenhuis M, Pelzer B (2010) Influential cases in multilevel modeling. A methodological comment. Am Sociol Rev 75:173–178CrossRefGoogle Scholar
  34. Wassenaar LI, Hobson KA (2003) Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies, Isotopes in Environ Health Stud 39:211–217CrossRefGoogle Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2019

Authors and Affiliations

  • Frédéric Jiguet
    • 1
    Email author
  • Kevin J. Kardynal
    • 2
  • Markus Piha
    • 3
  • Tuomas Seimola
    • 4
  • José Luis Copete
    • 5
  • Michel Alexandre Czajkowski
    • 6
  • Valery Dombrovski
    • 7
  • Ron Efrat
    • 8
  • Simonas Minkevicius
    • 9
  • Marko Raković
    • 10
  • Michał Skierczyǹski
    • 11
  • Keith A. Hobson
    • 2
    • 12
  1. 1.CESCO, UMR7204 MNHN-CNRS-Sorbonne UniversitéParisFrance
  2. 2.Environment and Climate Change CanadaSaskatoonCanada
  3. 3.Finnish Museum of Natural History LUOMUSUniversity of HelsinkiHelsinkiFinland
  4. 4.Natural Resources Institute Finland (Luke), Natural ResourcesHelsinkiFinland
  5. 5.Handbook of the Birds of the World Alive, Lynx EdicionsBellaterraSpain
  6. 6.OMPOParisFrance
  7. 7.Institute of Zoology, National Academy of SciencesMinskBelarus
  8. 8.Mitrani Department of Desert Ecology, The Jacob Blaustein Institute for Desert ResearchBen-Gurion University of the NegevMidreshet Ben-GurionIsrael
  9. 9.VilniusLithuania
  10. 10.Natural History Museum of BelgradeBelgradeSerbia
  11. 11.Department of Behavioural EcologyAdam Mickiewicz UniversityPoznanPoland
  12. 12.Dept. Biology and Environment and Climate Change CanadaUniversity of Western OntarioLondonCanada

Personalised recommendations