Advertisement

Multi-scale habitat requirements of forest bird species in a highly fragmented landscape

  • Gianpasquale ChiatanteEmail author
  • Zeno Porro
  • Arianna Musacchio
  • Arianna Bazzocchi
  • Alberto Meriggi
Original Article
  • 15 Downloads

Abstract

Land use changes in Europe have resulted in forest loss and fragmentation that have been proved to be key factors driving the decline of various forest bird populations. Quantifying the environmental factors which allow the persistence of forest birds in highly modified landscapes is therefore essential to enhance conservation efforts. In the present study, we defined the environmental factors determining the distribution of seven forest birds (Picus viridis, Dendrocopos major, Dryobates minor, Garrulus glandarius, Poecile palustris, Sitta europea, Aegithalos caudatus) in a central portion of the Po Plain, northern Italy. In the study area, less than 12% of the whole territory is covered by broad-leaved forests (concentrated along the main rivers) and tree plantations. To obtain a full picture of the habitat requirements of these seven forest bird species, we first conducted a survey of their populations using the point count method during the 2015 breeding season, following which, using resource selection functions, we investigated the effect of environmental variables on each species, mainly focusing on the role of natural forests and tree plantations. The effect of variables was assessed both at a home-range scale and at four different scales in the surrounding context. Tree plantations, in addition to natural forests, proved to be important for most of the seven species studied, including forest specialists such as Dryobates minor and Poecile palustris. The distribution of forest species was better explained by habitat amount than by habitat configuration, both at the home-range scale and in the surrounding context. As expected, Sitta europaea was the most sensitive species to land use changes, and broad-leaved natural forests were essential for its persistence in the landscape.

Keywords

Forest fragmentation Tree plantations Multi-grain analysis Resource selection function Landscape configuration Traditional poplar plantation 

Zusammenfassung

Mehrskalige Lebensraumanforderungen für Waldvogelarten in einer stark fragmentierten Landschaft.

Landnutzungsänderungen in Europa haben zu Waldverlust und Fragmentierung geführt, die sich wiederum als Schlüsselfaktoren für den Rückgang verschiedener Waldvogelbestände erwiesen haben. Die Identifizierung von Umweltfaktoren, die das Fortbestehen von Waldvögeln in stark veränderten Landschaften ermöglichen, ist daher unerlässlich, um die Erhaltungsbemühungen zu verbessern. In der vorliegenden Studie haben wir Umweltfaktoren identifiziert, die die Verbreitung von sieben Waldvogelarten (Picus viridis, Dendrocopos major, Dryobates minor, Garrulus glandarius, Poecile palustris, Sitta europea, Aegithalos caudatus) in einem zentralen Teil der Po-Ebene in Norditalien bestimmen. In dem betrachteten Gebiet sind weniger als 12% des gesamten Gebiets von Laubwäldern (entlang der Hauptflüsse) und Baumplantagen bedeckt. Um ein umfassendes Bild über ihre Lebensraumanforderungen zu erhalten, wurden die sieben Waldarten während der Brutsaison 2015 anhand von „point counts“erfasst. Anschließend haben wir mittels Ressourcenauswahlfunktionen die Auswirkungen von Umweltvariablen für jede Art untersucht, wobei besonders die Rolle von natürlichen Wäldern und Baumplantagen betrachtet wurde. Die Auswirkungen der Variablen wurde sowohl auf der home range Skala als auch auf vier verschiedenen Skalen im Umgebungskontext bewertet. Baumplantagen waren neben natürlichen Wäldern für die meisten Arten von großer Bedeutung, darunter waren auch Waldspezialisten wie Dryobates minor und Poecile palustris. Die Verteilung der im Wald lebenden Arten wurde besser durch die Erweiterung der Lebensräume als durch ihre Konfiguration erklärt, sowohl auf der home range Skala als auch im Umgebungskontext. Wie zu erwarten, war Sitta europaea die empfindlichste Art für Landnutzungsänderungen, im Umkehrschluss waren Naturwälder für das Vorkommen der Art unerlässlich

Notes

Acknowledgements

We thank Olivia Dondina for useful suggestions on the survey design and Kati Sara Bovo for help in the fieldwork. We would also like to acknowledge Andrew Sturgeon for proofreading and providing linguistic advice and Nathalie Kohl for translating the abstract into German.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

Bird surveys were conducted with permission from local landowners where necessary. Data collection did not involve sampling procedure, and experimental manipulation of birds and the field work was conducted under Law of the Republic of Italy on the Protection of Wildlife (February 25, 1992).

Supplementary material

10336_2019_1664_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1334 kb)

References

  1. Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second Int Symp Information Theory. Akademiai Kiado, Budapest, pp 267–281Google Scholar
  2. Alderman J, McCollin D, Hinsley SA et al (2005) Modelling the effects of dispersal and landscape configuration on population distribution and viability in fragmented habitat. Landsc Ecol 20:857–870.  https://doi.org/10.1007/s10980-005-4135-5 CrossRefGoogle Scholar
  3. Anderson DR, Burnham KP (2002) Avoiding pitfalls when using information-theoretic methods. J Wildl Manag 66:912–918CrossRefGoogle Scholar
  4. Anderson DR, Burnham KP, Thompson WL (2000) Null hypothesis testing: problems, prevalence, and an alternative. J Wildl Manag 64:912–923.  https://doi.org/10.2307/3803199 CrossRefGoogle Scholar
  5. Anderson DR, Link WA, Johnson DH, Burnham KP (2001) Suggestions for presenting the results of data analyses. J Wildl Manag 65:373–378CrossRefGoogle Scholar
  6. Andrén H (1992) Corvid density and nest predation in relation to forest fragmentation—a landscape perspective. Ecology 73:794–804CrossRefGoogle Scholar
  7. Angelstam P (1990) Factors determining the composition and persistence of local woodpecker assemblages in taiga forest in Sweden: a case for landscape ecological studies. Institutionen foer Viltekologi, SwedenGoogle Scholar
  8. Angelstam P, Mikusiński G (1994) Woodpecker assemblages in natural and managed boreal and hemiboreal forest—a review. Ann Zool Fenn 31:157–172Google Scholar
  9. Archaux F, Martin H (2009) Hybrid poplar plantations in a floodplain have balanced impacts on farmland and woodland birds. For Ecol Manag 257:1474–1479.  https://doi.org/10.1016/j.foreco.2008.12.021 CrossRefGoogle Scholar
  10. Bani L, Baietto M, Bottoni L, Massa R (2002) The use of focal species in designing a habitat network for a lowland area of Lombardy, Italy. Conserv Biol 16:826–831CrossRefGoogle Scholar
  11. Bani L, Massimino D, Bottoni L, Massa R (2006) A multiscale method for selecting indicator species and priority conservation areas: a case study for broadleaved forests in Lombardy, Italy. Conserv Biol 20:512–526.  https://doi.org/10.1111/j.1523-1739.2006.00331.x CrossRefPubMedGoogle Scholar
  12. Barabesi L, Fattorini L (2013) Random versus stratified location of transects or points in distance sampling: theoretical results and practical considerations. Environ Ecol Stat 20:215–236.  https://doi.org/10.1007/s10651-012-0216-1 CrossRefGoogle Scholar
  13. Barrett GW, Ford HA, Recher HF (1994) Conservation of woodland birds in a fragmented rural landscape. Pac Conserv Biol 1:245.  https://doi.org/10.1071/PC940245 CrossRefGoogle Scholar
  14. Bartoń K (2010) Package MuMIn: multi-model inference. https://www.cran.r-project.org. Accessed 3 June 2016
  15. Bellamy PE, Rothery P, Hinsley SA, Newton I (2000) Variation in the relationship between numbers of breeding pairs and woodland area for passerines in fragmented habitat. Ecography 23:130–138.  https://doi.org/10.1111/j.1600-0587.2000.tb00268.x CrossRefGoogle Scholar
  16. Bellamy PE, Rothery P, Hinsley SA (2003) Synchrony of woodland bird populations: the effect of landscape structure. Ecography 26:338–348.  https://doi.org/10.1034/j.1600-0587.2003.03457.x CrossRefGoogle Scholar
  17. Bianco PG (1990) Potential role of the palaeohistory of the Mediterranean and Paratethys basins on the early dispersal of Euro-Mediterranean freshwater fishes. Ichthyol Explor Freshw 1:167–184Google Scholar
  18. Bibby CJ, Burgess ND, Hill DA, Mustoe SH (2000) Bird census techniques, 2nd edn. Academic Press, LondonGoogle Scholar
  19. Bivand R, Pebesma EJ, Gómez-Rubio V (2008) Applied spatial data analysis with R. Springer, New YorkGoogle Scholar
  20. Bonthoux S, Balent G, Augiron S et al (2017) Geographical generality of bird-habitat relationships depends on species traits. Divers Distrib 23:1343–1352.  https://doi.org/10.1111/ddi.12619 CrossRefGoogle Scholar
  21. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New YorkCrossRefGoogle Scholar
  22. Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FK (2002) Evaluating resource selection functions. Ecol Model 157:281–300.  https://doi.org/10.1016/S0304-3800(02)00200-4 CrossRefGoogle Scholar
  23. Bremer LL, Farley KA (2010) Does plantation forestry restore biodiversity or create green deserts?. A synthesis of the effects of land-use transitions on plant species richness. Biodivers Conserv 19:3893–3915.  https://doi.org/10.1007/s10531-010-9936-4 CrossRefGoogle Scholar
  24. Brennan JM, Bender DJ, Contreras TA, Fahrig L (2002) Focal patch landscape studies for wildlife management: optimizing sampling effort across scales. In: Liu J, Taylor William W (eds) Integrating landscape ecology into natural resource management. Cambridge University Press, Cambridge, pp 68–91Google Scholar
  25. Brichetti P, Fracasso G (2011) Ornitologia italiana: identificazione, distribuzione, consistenza e movimenti degli uccelli italiani, vol 7. Paridae–Corvidae, Alberto Perdisa EditoreGoogle Scholar
  26. Brotons L, Herrando S, Martin J-L (2005) Bird assemblages in forest fragments within Mediterranean mosaics created by wild fires. Landsc Ecol 19:663–675.  https://doi.org/10.1007/s10980-005-0165-2 CrossRefGoogle Scholar
  27. Broughton RK, Hinsley SA, Bellamy PE et al (2006) Marsh Tit Poecile palustris territories in a British broad-leaved wood: marsh Tit territories in a broad-leaved wood. Ibis 148:744–752.  https://doi.org/10.1111/j.1474-919X.2006.00583.x CrossRefGoogle Scholar
  28. Broughton RK, Hill RA, Bellamy PE, Hinsley SA (2010) Dispersal, ranging and settling behaviour of Marsh Tits Poecile palustris in a fragmented landscape in lowland England. Bird Study 57:458–472.  https://doi.org/10.1080/00063657.2010.489316 CrossRefGoogle Scholar
  29. Broughton RK, Hill RA, Freeman SN et al (2012) Describing habitat occupation by woodland birds with territory mapping and remotely sensed data: an example using the Marsh Tit (Poecile palustris). The Condor 114:812–822.  https://doi.org/10.1525/cond.2012.110171 CrossRefGoogle Scholar
  30. Broughton RK, Hill RA, Hinsley SA (2013) Relationships between patterns of habitat cover and the historical distribution of the Marsh Tit, Willow Tit and Lesser Spotted Woodpecker in Britain. Ecol Inform 14:25–30.  https://doi.org/10.1016/j.ecoinf.2012.11.012 CrossRefGoogle Scholar
  31. Burke DM, Nol E (1998) Influence of food abundance, nest-site habitat, and forest fragmentation on breeding Ovenbirds. Auk 115:96–104CrossRefGoogle Scholar
  32. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information–theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  33. Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35.  https://doi.org/10.1007/s00265-010-1029-6 CrossRefGoogle Scholar
  34. Camprodon J, Faus J, Salvanyà P et al (2015) Suitability of poplar plantations for a cavity-nesting specialist, the Lesser Spotted Woodpecker Dendrocopos minor, in the Mediterranean mosaic landscape. Acta Ornithol 50:157–169.  https://doi.org/10.3161/00016454AO2015.50.2.004 CrossRefGoogle Scholar
  35. Capotorti G, Guida D, Siervo V et al (2012) Ecological classification of land and conservation of biodiversity at the national level: the case of Italy. Biol Conserv 147:174–183.  https://doi.org/10.1016/j.biocon.2011.12.028 CrossRefGoogle Scholar
  36. Carpenter J, Smart J, Amar A et al (2010) National-scale analyses of habitat associations of Marsh Tits Poecile palustris and Blue Tits Cyanistes caeruleus: two species with opposing population trends in Britain. Bird Study 57:31–43.  https://doi.org/10.1080/00063650903026108 CrossRefGoogle Scholar
  37. Cattarino L, McAlpine CA, Rhodes JR (2016) Spatial scale and movement behaviour traits control the impacts of habitat fragmentation on individual fitness. J Anim Ecol 85:168–177.  https://doi.org/10.1111/1365-2656.12427 CrossRefPubMedGoogle Scholar
  38. Chamberlain D, Rolando A (2014) The effects of a settling-down period on estimates of bird species richness and occurrence from point counts in the Alps. Bird Study 61:121–124.  https://doi.org/10.1080/00063657.2013.870527 CrossRefGoogle Scholar
  39. Charman EC, Smith KW, Gruar DJ et al (2010) Characteristics of woods used recently and historically by Lesser Spotted Woodpeckers Dendrocopos minor in England. Ibis 152:543–555.  https://doi.org/10.1111/j.1474-919X.2010.01020.x CrossRefGoogle Scholar
  40. Charman EC, Smith KW, Dodd S et al (2012) Pre-breeding foraging and nest site habitat selection by Lesser Spotted Woodpeckers Dendrocopos minor in mature woodland blocks in England. Ornis Fennica 89:182–196Google Scholar
  41. Chiatante G (2017) Landscape structure influencing the spatial distribution of the Short-toed Treecreeper Certhia brachydactyla in a Mediterranean agroecosystem. Avian Biol Res 10:49–57.  https://doi.org/10.3184/175815617X14836196626584 CrossRefGoogle Scholar
  42. Chiatante G, Dondina O, Lucchelli M et al (2017) Habitat selection of European badger Meles meles in a highly fragmented forest landscape in northern Italy: the importance of hedgerows and agro-forestry systems. Hystrix It J Mamm 28:247–252.  https://doi.org/10.4404/hystrix-00005-2017 CrossRefGoogle Scholar
  43. Christian DP, Hoffman W, Hanowski JM et al (1998) Bird and mammal diversity on woody biomass plantations in north America. Biomass Bioenerg 14:395–402CrossRefGoogle Scholar
  44. Cody ML (1985) Habitat selection in birds. Academic Press, OrlandoGoogle Scholar
  45. Core Team R (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  46. Cramp S (ed) (1985) Handbook of the birds of Europe the middle East and North Africa, vol 4. Terns to woodpeckers. Oxford University Press, OxfordGoogle Scholar
  47. Cramp S, Perrins CM (1993) Handbook of the birds of Europe the middle East and North Africa, vol 7. Flycatchers to Shrikes. Oxford University Press, New YorkGoogle Scholar
  48. Cramp S, Perrins CM (1994) Handbook of the birds of Europe the middle East and North Africa, vol 8. Crows to finches. Oxford University Press, New YorkGoogle Scholar
  49. Crawley MJ (1993) GLIM for ecologists. Blackwell Scientific Publications, OxfordGoogle Scholar
  50. del Hoyo J, Elliot A, Sargatal J (eds) (2000) Handobook of the birds of the world, vol 7. Jacamars to Woodpeckers, Lynx EdicionsGoogle Scholar
  51. Dolman PM, Hinsley SA, Bellamy PE, Watts K (2007) Woodland birds in patchy landscapes: the evidence base for strategic networks. Ibis 149:146–160.  https://doi.org/10.1111/j.1474-919X.2007.00748.x CrossRefGoogle Scholar
  52. Dondina O, Kataoka L, Orioli V, Bani L (2016) How to manage hedgerows as effective ecological corridors for mammals: a two-species approach. Agric Ecosyst Environ 231:283–290CrossRefGoogle Scholar
  53. Dondina O, Orioli V, Colli L et al (2018) Ecological network design from occurrence data by simulating species perception of the landscape. Landsc Ecol 33:275–287.  https://doi.org/10.1007/s10980-017-0600-1 CrossRefGoogle Scholar
  54. Dorresteijn I, Hartel T, Hanspach J et al (2013) The conservation value of traditional rural landscapes: the case of woodpeckers in Transylvania Romania. PLoS One 8:e65236.  https://doi.org/10.1371/journal.pone.0065236 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ente Regionale per i Servizi all'Agricoltura e alle Foreste (2014) DUSAF 4.0, Destinazione d'Uso dei Suoli Agricoli e Forestali. Regione Lombardia, MilanGoogle Scholar
  56. European Environment Agency (EEA) (2011) Landscape fragmentation in Europe. European Environment Agency, CopenhagenGoogle Scholar
  57. European Environment Agency (EEA) (2016a) Mapping and assessing the condition of Europe’s ecosystems: progress and challenges. EEA contribution to the implementation of the EU biodiversity strategy to 2020. European Environment Agency, CopenhagenGoogle Scholar
  58. European Environment Agency (EEA) (2016b) European forest ecosystems. State and trends, European Environment Agency, CopenhagenGoogle Scholar
  59. Enoksson B, Angelstam P, Larsson K (1995) Deciduous forest and resident birds: the problem of fragmentation within a coniferous forest landscape. Landsc Ecol 10:267–275CrossRefGoogle Scholar
  60. Fahrig L (2001) How much habitat is enough? Biol Conserv 100:65–74.  https://doi.org/10.1016/S0006-3207(00)00208-1 CrossRefGoogle Scholar
  61. Fahrig L (2002) Effect of habitat fragmentation on the extinction threshold: a synthesis. Ecol Appl 12:346.  https://doi.org/10.2307/3060946 CrossRefGoogle Scholar
  62. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Syst 34:487–515CrossRefGoogle Scholar
  63. Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663CrossRefGoogle Scholar
  64. Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Syst 48:1–23.  https://doi.org/10.1146/annurev-ecolsys-110316-022612 CrossRefGoogle Scholar
  65. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874.  https://doi.org/10.1016/j.patrec.2005.10.010 CrossRefGoogle Scholar
  66. Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280CrossRefGoogle Scholar
  67. Flade M (1994) Die Brutvogelgemeinschaften Mittel- und Norddeutschlands: Grundlagen für den Gebrauch vogelkundlicher Daten in der Landschaftsplanung. IHW-Verl, EchingGoogle Scholar
  68. Fox J, Monette G (1992) Generalized collinearity diagnostics. J Am Stat Assoc 87:178–183.  https://doi.org/10.2307/2290467 CrossRefGoogle Scholar
  69. Fox J, Weisberg S (2011) Package car: an R companion to applied regression. https://www.cran.r-project.org. Accessed 3 June 2016
  70. Fuller RJ, Noble DG, Smith KW, Vanhinsbergh D (2005) Recent declines in populations of woodland birds in Britain. Brit Birds 98:116–143Google Scholar
  71. Gallé R, Torma A, Maák I (2016) The effect of forest age and habitat structure on the ground-dwelling ant assemblages of lowland poplar plantations: forest age, habitat structure and ants. Agric For Entomol 18:151–156.  https://doi.org/10.1111/afe.12148 CrossRefGoogle Scholar
  72. Glue DE, Boswell T (1994) Comparative nesting ecology of the three British breeding woodpeckers. Brit Birds 87:257–269Google Scholar
  73. Gorman G (2004) Woodpeckers of Europe: a study of the European Picidae. Bruce Coleman, Chalfont St PeterGoogle Scholar
  74. Guisan A, Edwards TC, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100.  https://doi.org/10.1016/S0304-3800(02)00204-1 CrossRefGoogle Scholar
  75. Hatchwell BJ, Russell AF, Fowlie MK, Ross DJ (1999) Reproductive success and nest-site selection in a cooperative breeder: effect of experience and a direct benefit of helping. Auk 116:355–363.  https://doi.org/10.2307/4089370 CrossRefGoogle Scholar
  76. Hermansen JS, Saether SA, Elgvin TO et al (2011) Hybrid speciation in sparrows I: phenotypic intermediacy, genetic admixture and barriers to gene flow. Mol Ecol 20:3812–3822.  https://doi.org/10.1111/j.1365-294X.2011.05183.x CrossRefPubMedGoogle Scholar
  77. Hernández Á (2010) Breeding ecology of long-tailed tits Aegithalos caudatus in Northwestern Spain: phenology, nest-site selection, nest success and helping behaviour. Ardeola 57:267–284Google Scholar
  78. Hinsley SA, Bellamy PE, Newton I, Sparks TH (1995) Habitat and landscape factors influencing the presence of individual breeding bird species in woodland fragments. J Avian Biol 26:94–104CrossRefGoogle Scholar
  79. Hinsley SA, Carpenter JE, Broughton RK et al (2007) Habitat selection by Marsh Tits Poecile palustris in the UK. Ibis 149:224–233.  https://doi.org/10.1111/j.1474-919X.2007.00691.x CrossRefGoogle Scholar
  80. Hontsch K (2004) Der Kleinspecht (Picoides minor): Autokologie einer bestandsbedrohten Vogelart im hessischen Vordertaunus. PhD thesis. University of Frankfurt, FrankfurtGoogle Scholar
  81. Jackson HB, Fahrig L (2015) Are ecologists conducting research at the optimal scale? Is research conducted at optimal scales? Glob Ecol Biogeogr 24:52–63.  https://doi.org/10.1111/geb.12233 CrossRefGoogle Scholar
  82. Jansson G, Angelstam P (1999) Threshold levels of habitat composition for the presence of the long-tailed tit (Aegithalos caudatus) in a boreal landscape. Landsc Ecol 14:283–290CrossRefGoogle Scholar
  83. Kašová M, Naďo L, Kaňuch P (2014) Structure of tree vegetation may reduce costs of territory defence in Eurasian Nuthatch Sitta europaea. Bird Study 61:413–420.  https://doi.org/10.1080/00063657.2014.933771 CrossRefGoogle Scholar
  84. Keating KA, Cherry S (2004) Use and interpretation of logistic regression in habitat-selection studies. J Wildl Manag 68:774–789.  https://doi.org/10.2193/0022-541X(2004)068%5b0774:UAIOLR%5d2.0.CO;2 CrossRefGoogle Scholar
  85. Kosiński Z, Kempa M (2007) Density, distribution and nest-sites of woodpeckers picidae, in a managed forest of Western Poland. Pol J Ecol 55:519–533Google Scholar
  86. Krebs CJ (1999) Ecological methodology, 2nd edn. Benjamin/Cummings, Menlo ParkGoogle Scholar
  87. Laforge MP, Vander Wal E, Brook RK et al (2015) Process-focussed, multi-grain resource selection functions. Ecol Model 305:10–21.  https://doi.org/10.1016/j.ecolmodel.2015.03.003 CrossRefGoogle Scholar
  88. Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673CrossRefGoogle Scholar
  89. Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  90. Lens L, Van Dongen S, Norris K et al (2002) Avian persistence in fragmented rain-forest. Science 298:1236–1238CrossRefPubMedGoogle Scholar
  91. McCollin D (1993) Avian distribution patterns in a fragmented wooded landscape (North Humberside, U.K.): the role of between-patch and within-patch structure. Glob Ecol Biogeogr Lett 3:48.  https://doi.org/10.2307/2997459 CrossRefGoogle Scholar
  92. McGarigal K, McComb WC (1995) Relationships between landscape structure and breeding birds in the Oregon coast range. Ecol Monogr 65:235–260CrossRefGoogle Scholar
  93. Manly BFJ, McDonald LL, Thomas DL et al (2002) Resource selection by animals: statistical design and analysis for field studies, 2nd edn. Kluwer Academic Publishers, DordrechtGoogle Scholar
  94. Martin AE, Fahrig L (2012) Measuring and selecting scales of effect for landscape predictors in species–habitat models. Ecol Appl 22:2277–2292CrossRefPubMedGoogle Scholar
  95. Martín-García J, Barbaro L, Diez J, Jactel H (2013) Contribution of poplar plantations to bird conservation in riparian landscapes. Silva Fenn 47:1043.  https://doi.org/10.14214/sf.1043 CrossRefGoogle Scholar
  96. Matthysen E (1999) Nuthatches (Sitta europaea: Aves) in forest fragments: demography of a patchy population. Oecologia 119:501–509.  https://doi.org/10.1007/s004420050813 CrossRefPubMedGoogle Scholar
  97. Matthysen E, Currie D (1996) Habitat fragmentation reduces disperser success in juvenile nuthatches Sitta europaea: evidence from patterns of territory establishment. Ecography 19:67–72.  https://doi.org/10.1111/j.1600-0587.1996.tb00156.x CrossRefGoogle Scholar
  98. Matthysen E, Adriaensen F, Dhondt AA, Dhondt AA (1995) Dispersal distances of nuthatches, Sitta europaea, in a highly fragmented forest habitat. Oikos 72:375.  https://doi.org/10.2307/3546123 CrossRefGoogle Scholar
  99. Mazgajski TD, Rejt L (2006) The effect of forest patch size on the breeding biology of the great spotted woodpecker Dendrocopos major. Ann Zool Fenn 43:211–220Google Scholar
  100. Miguet P, Jackson HB, Jackson ND et al (2016) What determines the spatial extent of landscape effects on species? Landsc Ecol 31:1177–1194.  https://doi.org/10.1007/s10980-015-0314-1 CrossRefGoogle Scholar
  101. Mikusiński G, Angelstam P (1997) European woodpeckers and anthropogenic habitat change: a review. Vogelwelt 118:277–284Google Scholar
  102. Mikusiński G, Angelstam P (1998) Economic geography, forest distribution, and woodpecker diversity in Central Europe. Conserv Biol 12:200–208.  https://doi.org/10.1111/j.1523-1739.1998.96310.x CrossRefGoogle Scholar
  103. Miranda B, Pasinelli G (2001) Habitatansprüche des Kleinspechts (Dendrocopos minor) in Wäldern der Nordost-Schweiz. J Ornithol 142:295–305.  https://doi.org/10.1007/BF01651368 CrossRefGoogle Scholar
  104. Morrison ML, Marcot BG, Mannan RW (2006) Wildlife-habitat relationships: concepts and applications, 3rd edn. Island Press, Washington DCGoogle Scholar
  105. Mortelliti A (2013) Targeting habitat management in fragmented landscapes: a case study with forest vertebrates. Biodivers Conserv 22:187–207CrossRefGoogle Scholar
  106. Mortelliti A, Fagiani S, Battisti C et al (2010) Independent effects of habitat loss, habitat fragmentation and structural connectivity on forest-dependent birds. Divers Distrib 16:941–951CrossRefGoogle Scholar
  107. Myczko Ł, Rosin ZM, Skórka P, Tryjanowski P (2014) Urbanization level and woodland size are major drivers of woodpecker species richness and abundance. PLoS One 9:e94218.  https://doi.org/10.1371/journal.pone.0094218 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Navarro LM, Pereira HM (eds) (2015) Rewilding European landscapes. Springer International Publishing AG, ChamGoogle Scholar
  109. Opdam P (1991) Metapopulation theory and habitat fragmentation: a review of holarctic breeding bird studies. Landscape Ecol 5:93–106CrossRefGoogle Scholar
  110. Opdam P, Rijsdijk G, Hustings F (1985) Bird communities in small woods in an agricultural landscape: effects of area and isolation. Biol Conserv 34:333–352CrossRefGoogle Scholar
  111. Opdam P, Foppen R, Reijnen R, Schotman A (1995) The landscape ecological approach in bird conservation: integrating the metapopulation concept into spatial planning. Ibis 137:S139–S146.  https://doi.org/10.1111/j.1474-919X.1995.tb08434.x CrossRefGoogle Scholar
  112. Paquette A, Messier C (2010) The role of plantations in managing the world’s forests in the Anthropocene. Front Ecol Environ 8:27–34.  https://doi.org/10.1890/080116 CrossRefGoogle Scholar
  113. Pardini R, Faria D, Accacio GM et al (2009) The challenge of maintaining Atlantic forest biodiversity: a multi-taxa conservation assessment of specialist and generalist species in an agro-forestry mosaic in southern Bahia. Biol Conserv 142:1178–1190.  https://doi.org/10.1016/j.biocon.2009.02.010 CrossRefGoogle Scholar
  114. Pasinelli G (2007) Nest site selection in middle and great spotted woodpeckers Dendrocopos medius and D. major: implications for forest management and conservation. Biodivers Conserv 16:1283–1298.  https://doi.org/10.1007/s10531-007-9162-x CrossRefGoogle Scholar
  115. Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245.  https://doi.org/10.1016/S0304-3800(00)00322-7 CrossRefGoogle Scholar
  116. Petts GE, Möller H, Roux AL (eds) (1989) Historical change of large alluvial rivers: Western Europe. Wiley, Chichester, New YorkGoogle Scholar
  117. Pons J, Pausas JG (2008) Modelling jay (Garrulus glandarius) abundance and distribution for oak regeneration assessment in Mediterranean landscapes. For Ecol Manag 256:578–584.  https://doi.org/10.1016/j.foreco.2008.05.003 CrossRefGoogle Scholar
  118. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  119. Riemer S (2009) Population densities and habitat use of woodpecker in a Danube floodplain forest in Eastern Austria. BSc thesis. University of Vienna, ViennaGoogle Scholar
  120. Roberge J-M, Angelstam P (2006) Indicator species among resident forest birds—a cross-regional evaluation in northern Europe. Biol Conserv 130:134–147.  https://doi.org/10.1016/j.biocon.2005.12.008 CrossRefGoogle Scholar
  121. Roberge J-M, Angelstam P, Villard M-A (2008) Specialised woodpeckers and naturalness in hemiboreal forests—deriving quantitative targets for conservation planning. Biol Conserv 141:997–1012.  https://doi.org/10.1016/j.biocon.2008.01.010 CrossRefGoogle Scholar
  122. Robles H, Ciudad C, Vera R et al (2007) Sylvopastoral management and conservation of the middle spotted woodpecker at the south-western edge of its distribution range. For Ecol Manag 242:343–352.  https://doi.org/10.1016/j.foreco.2007.01.052 CrossRefGoogle Scholar
  123. Rolstad J, Løken B, Rolstad E (2000) Habitat selection as a hierarchical spatial process: the green woodpecker at the northern edge of its distribution range. Oecologia 124:116–129.  https://doi.org/10.1007/s004420050031 CrossRefPubMedGoogle Scholar
  124. Romero JL, Mücke S, Pérez J (2010) A male destroying an egg in a cooperative breeding attempt in Lesser Spotted Woodpecker Dendrocopos minor. J Ornithol 151:805–809.  https://doi.org/10.1007/s10336-010-0516-x CrossRefGoogle Scholar
  125. Rushton SP, Ormerod SJ, Kerby G (2004) New paradigms for modelling species distributions? J Appl Ecol 41:193–200.  https://doi.org/10.1111/j.0021-8901.2004.00903.x CrossRefGoogle Scholar
  126. Schmiegelow FKA, Mönkkönen M (2002) Habitat loss and fragmentation in dynamic landscapes: avian perspectives from the boreal forest. Ecol Appl 12:375.  https://doi.org/10.2307/3060949 CrossRefGoogle Scholar
  127. Sing T, Sander O, Beerenwinkel N, Lengauer T (2007) Package ROCR: visualizing the performance of scoring classifiers. https://www.cran.r-project.org. Accessed 3 June 2016
  128. Smith AC, Koper N, Francis CM, Fahrig L (2009) Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landsc Ecol 24:1271–1285.  https://doi.org/10.1007/s10980-009-9383-3 CrossRefGoogle Scholar
  129. Smith KW (1997) Nest site selection of the great spotted woodpecker Dendrocopos major in two oak woods in southern England and its implications for woodland management. Biol Conserv 80:283–288.  https://doi.org/10.1016/S0006-3207(96)00038-9 CrossRefGoogle Scholar
  130. Styring AR, Ragai R, Unggang J et al (2011) Bird community assembly in Bornean industrial tree plantations: effects of forest age and structure. Forest Ecol Manag 261:531–544.  https://doi.org/10.1016/j.foreco.2010.11.003 CrossRefGoogle Scholar
  131. Sutherland WJ (2006) Ecological census techniques: a handbook, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  132. Sutherland WJ, Newton I, Green R (eds) (2004) Bird ecology and conservation: a handbook of techniques. Oxford University Press, OxfordGoogle Scholar
  133. Tobalske C, Tobalske BW (1999) Using atlas data to model the distribution of woodpecker species in the Jura, France. The Condor 101:472–483.  https://doi.org/10.2307/1370177 CrossRefGoogle Scholar
  134. Torrenta R, Villard M-A (2017) A test of the habitat amount hypothesis as an explanation for the species richness of forest bird assemblages. J Biogeogr 44:1791–1801.  https://doi.org/10.1111/jbi.13022 CrossRefGoogle Scholar
  135. van Dorp D, Opdam PFM (1987) Effects of patch size, isolation and regional abundance on forest bird communities. Landsc Ecol 1:59–73CrossRefGoogle Scholar
  136. Villard M-A, Metzger JP (2014) Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J Appl Ecol 51:309–318.  https://doi.org/10.1111/1365-2664.12190 CrossRefGoogle Scholar
  137. Villard M-A, Trzcinski MK, Merriam G (1999) Fragmentation effects on forest birds: relative influence of woodland cover and configuration on landscape occupancy. Conserv Biol 13:774–783CrossRefGoogle Scholar
  138. Wade TG, Ritters KH, Wickham JD, Jones KB (2003) Distribution and causes of global forest fragmentation. Conserv Ecol 7:7CrossRefGoogle Scholar
  139. Wesołowski T, Tomiałojć L (1986) The breeding ecology of woodpeckers in a temperate primaeval forest: preliminary data. Acta Ornithol 22(1):1–21Google Scholar
  140. Whitehouse NJ (2006) The Holocene British and Irish ancient forest fossil beetle fauna: implications for forest history, biodiversity and faunal colonisaztion. Quat Sci Rev 25:1755–1789.  https://doi.org/10.1016/j.quascirev.2006.01.010 CrossRefGoogle Scholar
  141. Wiggins DA, Møller AP (1997) Island size, isolation, or interspecific competition? The breeding distribution of the Parus guild in the Danish archipelago. Oecologia 111:255–260.  https://doi.org/10.1007/s004420050233 CrossRefPubMedGoogle Scholar
  142. Wiktander U, Nilsson IN, Nilsson SG et al (1992) Occurrence of the Lesser Spotted Woodpecker Dendrocopos minor in relation to area of deciduous forest. Ornis Fenn 69:113–118Google Scholar
  143. Wiktander U, Olsson O, Nilsson SG (2001) Seasonal variation in home-range size, and habitat area requirement of the Lesser Spotted Woodpecker (Dendrocopos minor) in southern Sweden. Biol Conserv 100:387–395.  https://doi.org/10.1016/S0006-3207(01)00045-3 CrossRefGoogle Scholar
  144. Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological data. Springer SBM, New YorkCrossRefGoogle Scholar
  145. Zuur AF, Ieno EN, Walker NJ et al (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar
  146. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems: data exploration. Methods Ecol Evol 1:3–14.  https://doi.org/10.1111/j.2041-210X.2009.00001.x CrossRefGoogle Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2019

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesUniversity of PaviaPaviaItaly

Personalised recommendations