Advertisement

Avian frugivory rates at an abundant tree species are constant throughout the day and slightly influenced by weather conditions

  • Maiara VissotoEmail author
  • Jeferson Vizentin-Bugoni
  • Olivier J. F. Bonnet
  • Gustavo C. Gomes
  • Rafael A. Dias
Original Article

Abstract

Birds, like most animals, are expected to adjust their foraging activity in response to biotic and abiotic variations to optimize energy intake and reduce costs associated with finding and ingesting food. This may lead to temporal variation in the exploitation of food resources, which has been investigated for birds of different feeding guilds but remains poorly understood for frugivorous species. Here, we tested whether the frugivory activity of birds on Schinus terebinthifolia trees varies throughout the day during the austral autumn and winter and whether variation is related to weather conditions. For two consecutive years, we quantified frugivory events for 304 h in 19 individuals of S. terebinthifolia observed across four time periods throughout the day. We found that the number of frugivory events was similar irrespective of the time period, both for the entire assemblage (all species pooled together) and for the most common species analyzed individually. We additionally found that frugivory activity was slightly influenced by temperature and wind. The lack of any effect of daytime period on fruit consumption may relate to the high and prolonged levels of fruit availability in S. terebinthifolia and the short photoperiod of the autumn–winter, which favors frequent feeding throughout the day. Such constant removal of fruits by a diverse assemblage of generalist fruit consumers probably enhances seed dispersal and may have important implications for the population dynamics of this abundant plant. Our results also demonstrate that data on avian frugivory in temperate, open-vegetation environments can be quantified throughout the entire daytime during the cold season without temporal bias, which has important methodological implications for studies on bird–plant interactions.

Keywords

Bird–plant interactions Brazilian Peppertree Animal behavior Frequency of interactions Schinus terebinthifolia Frugivory 

Zusammenfassung

Die Menge an fruchtfressenden Vögeln an einer häufigen Baumart bleibt über den Tag hinweg konstant und wird in geringem Maße durch Wetterkonditionen beeinflusst.

Vögel sollten wie die meisten Tiere ihre Nahrungssuche an biotische und abiotische Veränderungen anpassen, um ihre Energieaufnahme zu optimieren und die mit der Nahrungssuche und -aufnahme verbundenen Kosten zu reduzieren. Dies könnte zu zeitlichen Schwankungen in der Nutzung der Nahrungsressourcen führen, was bereits bei Vögeln unterschiedlicher Nahrungsgilden untersucht wurde, jedoch für frugivore Arten weiterhin kaum erforscht ist. Wir untersuchten, ob die Aktivität fruchtfressender Vögel auf Brasilianischen Pfefferbäumen Schinus terebinthifolia im Verlaufe des Tages während des südlichen Herbstes und Winters variiert und ob diese Variation im Zusammenhang mit den Wetterbedingungen steht. In zwei aufeinanderfolgenden Jahren quantifizierten wir insgesamt 304 Stunden lang das Auftreten von Frugivorie auf 19 verschiedenen Bäumen der Art S. terebinthifolia, welche jeweils innerhalb von vier Zeitabschnitten über den Tag hinweg untersucht wurden. Wir fanden heraus, dass unabhängig vom Zeitabschnitt die Vorkommenshäufigkeit von Frugivorie sowohl für die gesamte Vogelgemeinschaft (alle Arten zusammengefasst), als auch für die häufigste Art individuell betrachtet gleichblieb. Weiterhin stellten wir fest, dass die Aktivität fruchtfressender Vögel in geringem Maße durch Temperatur und Wind beeinflusst wurde. Das Fehlen jeglicher Auswirkungen des Tageszeitraums auf den Fruchtverzehr könnte mit der hohen und anhaltenden Verfügbarkeit der Früchte an S. terebinthifolia und der kurzen Photoperiode im Herbst und Winter zusammenhängen, was eine regelmäßige Nahrungsaufnahme über den Tag hinweg begünstigt. Eine solche konstante Entnahme von Früchten durch eine vielfältige Gemeinschaft an fruchtfressenden Generalisten verbessert vermutlich die Samenausbreitung und hat möglicherweise wichtige Auswirkungen auf die Populationsdynamik dieser häufigen Pflanzenart. Unsere Ergebnisse zeigen weiterhin, dass Daten zur Frugivorie bei Vögeln in gemäßigten Breiten mit offener Vegetation während der kalten Jahreszeiten über den gesamten Tag hinweg ohne eine zeitliche Beeinflussung quantifiziert werden können. Dies hat wichtige methodische Auswirkungen auf Studien über Interaktionen zwischen Vogel und Pflanze.

Notes

Acknowledgements

We thank an anonymous reviewer for suggestions that improved the manuscript. J. Gleditsch, C. Downes and two anonymous contributors reviewed a previous version of the manuscript. J. Zanolla kindly provided lodging. G. C. Alves, chief of the Estação Experimental Terras Baixas—EMBRAPA Clima Temperado, allowed access to areas of the EMBRAPA and facilitated fieldwork. We also thank C. R. Júnior from the Laboratório de Agrometeorologia—EMBRAPA Clima Temperado for providing access to weather variables, and S. Lorandi for assistance during fieldwork. Funding was provided by the Programa de Apoio à Pós-Graduação (PROAP) of CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). Additional funding to JVB was provided by CERL-ERDC. All procedures carried out during this study comply with current Brazilian laws.

References

  1. Altmann SA (1974) Observational study of behaviour: sampling methods. Behavior 49:227–265.  https://doi.org/10.1163/156853974X00534 CrossRefGoogle Scholar
  2. Aschoff J (1966) Circadian activity pattern with two peaks. Ecology 47:657–662.  https://doi.org/10.2307/1933949 CrossRefGoogle Scholar
  3. Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593.  https://doi.org/10.1146/annurev.ecolsys.38.091206.095818 CrossRefGoogle Scholar
  4. Belton W (1994) Aves do Rio Grande do Sul, distribuição e biologia. Unisinos, São LeopoldoGoogle Scholar
  5. Bonter DN, Zuckerberg B, Sedgwick CW, Hochachka WM (2013) Daily foraging patterns in free-living birds: exploring the predation–starvation trade-off. Proc R Soc Lond B 280:20123087.  https://doi.org/10.1098/rspb.2012.3087 CrossRefGoogle Scholar
  6. Carvalho PER (2003) Espécies arbóreas brasileiras. Brasílica, ColomboGoogle Scholar
  7. Coates-Estrada R, Estrada A (1988) Frugivory and seed dispersal in Cymbopetalum baillonii (Annonaceae) at Los Tuxtlas, Mexico. J Trop Ecol 4:157–172.  https://doi.org/10.1017/S0266467400002650 CrossRefGoogle Scholar
  8. Core Team R (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  9. Daily GC, Ehrlich PR (1994) Influence of social status on individual foraging and community structure in a bird guild. Oecologia 100:153–165.  https://doi.org/10.1007/BF00317142 CrossRefGoogle Scholar
  10. D’Avila G, Gomes-Jr A, Canary AC, Bugoni L (2010) The role of avian frugivores on germination and potential seed dispersal of the Brazilian Pepper Schinus terebinthifolius. Biota Neotrop 10:45–51.  https://doi.org/10.1590/S1676-06032010000300004 CrossRefGoogle Scholar
  11. EMBRAPA (2017) Laboratório de Agrometeorologia. http://agromet.cpact.embrapa.br/. Accessed 4 Oct 2017
  12. Ewel JJ, Ojima DS, Karl DA, DeBusk WF (1982) Schinus in successional ecosystems of Everglades National Park. Report T-676. US Department of the Interior, National Park Service, Everglades National Park, South Florida Research Center, HomesteadGoogle Scholar
  13. Fernandez-Juricic E, Tran E (2007) Changes in vigilance and foraging behaviour with light intensity and their effects on food intake and predator detection in house finches. Anim Behav 74:1381–1390.  https://doi.org/10.1016/j.anbehav.2007.01.005 CrossRefGoogle Scholar
  14. Francisco MR, Galetti M (2001) Frugivoria e dispersão de sementes de Rapanea lancifolia (Myrsinaceae) por aves numa área de cerrado do Estado de São Paulo, sudeste do Brasil. Ararajuba 9:13–19Google Scholar
  15. Francisco MR, Galetti M (2002) Aves como potenciais dispersoras de sementes de Ocotea pulchella Mart. (Lauraceae) numa área de vegetação de cerrado do sudeste brasileiro. Braz J Bot 25:11–17.  https://doi.org/10.1590/S0100-84042002000100003 CrossRefGoogle Scholar
  16. Francisco MR, Lunardi VO, Galetti M (2007) Bird attributes, plant characteristics, and seed dispersal of Pera glabrata (Schott, 1858), (Euphorbiaceae) in a disturbed cerrado area. Braz J Biol 67:627–634.  https://doi.org/10.1590/S1519-69842007000400006 CrossRefGoogle Scholar
  17. Gomes VGN, Quirino ZGM, Araujo HFP (2014) Frugivory and seed dispersal by birds in Cereus jamacaru DC. ssp. jamacaru (Cactaceae) in the Caatinga of Northeastern Brazil. Braz J Biol 74:32–40.  https://doi.org/10.1590/1519-6984.15312 CrossRefGoogle Scholar
  18. Grubb TC Jr (1975) Weather-dependent foraging behavior of some birds wintering in a deciduous woodland. Condor 77:175–182.  https://doi.org/10.2307/1365788 CrossRefGoogle Scholar
  19. Herrera CM, Jordano P (1981) Prunus mahaleb and birds: the high-efficiency seed dispersal system of a temperate fruiting tree. Ecol Monogr 51:203–218.  https://doi.org/10.2307/2937263 CrossRefGoogle Scholar
  20. Houston AI, McNamara JM, Hutchinson JMC (1993) General results concerning the trade-off between gaining energy and avoiding predation. Philos Trans R Soc B 341:375–397.  https://doi.org/10.1098/rstb.1993.0123 CrossRefGoogle Scholar
  21. Howe HF (1977) Bird activity and seed dispersal of a tropical wet forest tree. Ecology 58:539–550.  https://doi.org/10.2307/1939003 CrossRefGoogle Scholar
  22. Howe HF (1979) Fear and frugivory. Am Nat 114:925–931CrossRefGoogle Scholar
  23. Howe HF (1981) Dispersal of a neotropical nutmeg (Virola sebifera) by birds. Auk 98:88–98.  https://doi.org/10.1093/auk/98.1.88 Google Scholar
  24. Howe HF, Estabrook GF (1977) On intraspecific competition for avian dispersers in tropical trees. Am Nat 111:817–832CrossRefGoogle Scholar
  25. IBGE (1986) Folha SH. 22 Porto Alegre e parte das folhas SH. 21 Uruguaiana e SI. 22 Lagoa Mirim: geologia, geomorfologia, pedologia, vegetação, uso potencial da terra. (Levantamento de Recursos Naturais, 33). IBGE, Rio de JaneiroGoogle Scholar
  26. IBGE (1992) Manual técnico da vegetação brasileira. (Série Manuais Técnicos em Geociências, n.1). IBGE, Rio de JaneiroGoogle Scholar
  27. Jesus S, Monteiro-Filho ELA (2007) Frugivoria por aves em Schinus terebinthifolius (Anacardiaceae) e Myrsine coriacea (Myrsinaceae). Rev Bras Orn 15:585–591Google Scholar
  28. Jordano P (2016) Sampling networks of ecological interactions. Funct Ecol 30:1883–1893.  https://doi.org/10.1111/1365-2435.12763 CrossRefGoogle Scholar
  29. Kantak GE (1981) Temporal feeding patterns of some tropical frugivores. Condor 83:185–187CrossRefGoogle Scholar
  30. Kissling DW, Böhning-Gaese K, Jetz W (2009) The global distribution of frugivory in birds. Glob Ecol Biogeogr 18:150–162.  https://doi.org/10.1111/j.1466-8238.2008.00431.x CrossRefGoogle Scholar
  31. Krügel MM, Behr ER (1998) Utilização de frutos de Schinus terebinthifolius Raddi (Anacardiaceae) por aves no Parque do Ingá, Maringá, Paraná. Biociências 6:47–56Google Scholar
  32. Kwit C, Levey D, Greenberg C, Pearson S, Mccarty J, Sargent S (2004) Cold temperature increases winter fruit removal rate of a bird-dispersed shrub. Oecologia 139:30–34CrossRefGoogle Scholar
  33. McNamara JM, Houston AI, Lima SL (1994) Foraging routines of small birds in winter: a theoretical investigation. J Avian Biol 25:287–302.  https://doi.org/10.2307/3677276 CrossRefGoogle Scholar
  34. Meyer R (2011) Schinus terebinthifolius. Fire Effects Information System. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Missoula. https://www.firescience.gov/projects/08-1-2-04/project/08-1-2-04_schter.pdf. Accessed 19 Feb 2019
  35. Moermond T, Denslow J (1985) Neotropical avian frugivores: patterns of behavior, morphology, and nutrition, with consequences for fruit selection. Ornithol Monogr 36:865–897.  https://doi.org/10.2307/40168322 CrossRefGoogle Scholar
  36. Panetta FD, Mckee J (1997) Recruitment of the invasive ornamental, Schinus terebinthifolius, is dependent upon frugivores. Aust J Ecol 22:432–438.  https://doi.org/10.1111/j.1442-9993.1997.tb00694.x CrossRefGoogle Scholar
  37. Piland NC, Winkler DW (2015) Tree Swallow frugivory in winter. Southeast Nat 14:123–136.  https://doi.org/10.1656/058.014.0117 CrossRefGoogle Scholar
  38. Pinheiro J, Bates D, Debroy S, Sarkar D, R Core Team (2016) nlme: linear and nonlinear mixed effects models. http://cran.r-project.org/web/packages/nlme. Accessed 6 Aug 2017
  39. Pratt TK, Stiles EW (1983) How long fruit-eating birds stay in the plants where they feed: implications for seed dispersal. Am Nat 122:797–805CrossRefGoogle Scholar
  40. Ricklefs RE, Hainsworth FR (1968) Temperature dependent behavior of the Cactus Wren. Ecology 49:227–233.  https://doi.org/10.2307/1934451 CrossRefGoogle Scholar
  41. Snow DW, Snow BK (1986) Some aspects of avian frugivory in a north temperate area relevant to tropical forest. In: Estrada A, Fleming TH (eds) Frugivores and seed dispersal. Dr W Junk Publishers, Dordrecht, pp 159–164CrossRefGoogle Scholar
  42. Vizentin-Bugoni J, Maruyama PK, Debastiani VJ, Duarte LS, Dalsgaard B, Sazima M (2016) Influences of sampling effort on detected patterns and structuring processes of a neotropical plant-hummingbird network. J Anim Ecol 85:262–272.  https://doi.org/10.1111/1365-2656.12459 CrossRefGoogle Scholar
  43. Wheelwright NT (1991) How long do fruit-eating birds stay in the plants where they feed? Biotropica 23:29–40.  https://doi.org/10.2307/2388685 CrossRefGoogle Scholar
  44. Wolf BO, Walsberg GE (1996) Thermal effects of radiation and wind on a small bird and implications for microsite selection. Ecology 77:2228–2236.  https://doi.org/10.2307/2265716 CrossRefGoogle Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Biologia Animal, Departamento de Ecologia, Zoologia e GenéticaUniversidade Federal de PelotasPelotasBrazil
  2. 2.Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Programa de Pós-Graduação em Sistemas de Produção Agrícola Familiar, Departamento de FitotecniaUniversidade Federal de PelotasPelotasBrazil

Personalised recommendations