Advertisement

Stable isotopes of carbon reveal flexible pairing strategies in a migratory Arctic bird

  • Rolanda J. SteenwegEmail author
  • Pierre Legagneux
  • Glenn T. Crossin
  • H. Grant Gilchrist
  • T. Kurt Kyser
  • Oliver P. Love
Original Article

Abstract

Many birds change their partners every year and pairing may occur before arrival on the breeding grounds. Early pairing strategies can benefit mates by strengthening pair-bonds and increasing the rate of pre-breeding resource acquisition, leading to increased reproductive output and success, especially for migratory species breeding in seasonally-constrained environments like the Arctic. Despite the theorized and documented advantages of early pairing, we know rather little about pairing phenology in many species. Here, we test the use of a stable isotope (carbon δ13C) method to assign geographic origin of paired birds to examine pairing phenology in Arctic-breeding Common Eiders (Somateria mollissima borealis). During two consecutive years, we captured paired individuals upon their arrival at breeding grounds approximately 2–3 weeks before laying. Pairs with similar δ13C in their claws indicates that they paired during winter, while similar blood values (with no similarity in claws) would reveal pairs formed much later, during the pre-breeding period near or on the breeding grounds. While a large proportion of pairs (43%) appeared to pair on wintering grounds, an almost equal number (52%) likely paired within 1 month prior to arrival on the breeding grounds. The remaining 5% did not have an obvious pairing time. Despite this variability in pairing phenology, we found no significant differences in body condition between females or males which paired in winter or spring. In the year characterized with more challenging winter conditions, pairs formed in spring tended to have a higher breeding propensity than those formed in winter, although there were no detectable links to body condition. Delaying pairing until spring may be advantageous for Arctic-breeding eiders, although a specific mechanism is unknown. Future research focusing on the energetic costs and benefits for male eiders during these periods would help further understand pairing phenology and potential impacts on males of female breeding decisions.

Keywords

Pair bond Pairing phenology Sea duck Spring staging Stable isotope analysis Winter migration 

Zusammenfassung

Stabile Isotope des Kohlenstoffs offenbaren flexible Paarungsstrategien bei einem arktischen Zugvogel

Viele Vögel wechseln jedes Jahr ihren Partner, wobei Paarbildungen bereits vor der Ankunft im Brutgebiet entstehen können. Bei der Strategie, sich frühzeitig zu verpaaren, können die Partner von einer stärkeren Paarbindung und einem erhöhten Maß der Ressourcennutzung während der Vorbrutzeit profitieren. Dies kann vor allem bei Zugvogelarten, die in Regionen mit jahreszeitlich begrenzt günstigsten Bedingungen wie der Arktis brüten, zu einer Erhöhung von Reproduktionsleistungen und -erfolg führen. Trotz der theoretisierten und dokumentierten Vorteile der frühzeitigen Paarbildung wissen wir bei vielen Arten ziemlich wenig über die Phänologie der Paarung. Wir testeten die Anwendung der Stabilisotopenmethode (Kohlenstoff δ13C), um die geographische Herkunft der verpaarten Vögel zu bestimmen und somit die Phänologie der Paarung bei den in arktischen Regionen brütenden Eiderenten (Somateria mollissima borealis) zu untersuchen. In zwei aufeinanderfolgenden Jahren haben wir verpaarte Individuen nach deren Ankunft im Brutgebiet ungefähr 2-3 Wochen vor der Eiablage gefangen. Paare mit ähnlichen δ13C-Werten in den Krallen weisen darauf hin, dass die Paarbildung im Winter stattfand, wohingegen ähnliche Blutwerte, jedoch keine ähnlichen δ13C-Werte in den Krallen, zeigen würden, dass die Paarbildung viel später im Laufe der Vorbrutzeit in Brutgebietsnähe erfolgt wäre. Es zeigte sich, dass sich ein großer Anteil der Paare (43%) bereits in den Überwinterungsgebieten bildete, während sich ein ungefähr gleichgroßer Teil (52%) vermutlich erst innerhalb eines Monates vor Ankunft im Brutgebiet verpaarte. Die verbleibenden 5% hatten keinen eindeutigen Paarungszeitpunkt. Ungeachtet der Variabilität in der Phänologie der Paarung konnten wir zwischen Weibchen und Männchen, welche sich im Winter oder Frühjahr verpaarten, keine signifikanten Unterschiede in der Körperkondition finden. In dem Jahr, in dem schwierigere Winterbedingungen herrschten, tendierten im Frühjahr entstandene Paare zu einer höheren Brutbereitschaft als die im Winter entstandenen Paare, wenngleich es keinen feststellbaren Zusammenhang mit der Körperkondition gab. Eine Verzögerung der Paarung bis in das Frühjahr hinein könnte vorteilhaft für die in arktischen Regionen brütenden Eiderenten sein, auch wenn der genaue Mechanismus dahinter unbekannt ist. Zukünftige Forschungen zu den energetischen Kosten und Nutzen der männlichen Eiderenten während dieser Zeiträume würden dazu beitragen, die Phänologie der Paarung und die möglichen Folgen der weiblichen Brutentscheidungen für die Männchen zu verstehen.

Notes

Acknowledgements

We extend thanks to the East Bay Island Field crews of 2015 and 2016 for data collection, AV and EL for help with stable isotope analyses, JN and JA for essential help and ensuring our safety in the field, IB for data management, MJ for coordinating fieldwork and much more, and two anonymous reviewers for helpful comments in improving this manuscript. This work was supported by the Natural Sciences and Engineering Research Council of Canada (Discovery, Northern Supplement, and Graduate Scholarship Award programs), the Canada Research Chairs Program, the Northern Scientific Training Program, and the Polar Continental Shelf Program.

References

  1. Bluhm CK (1988) Temporal patterns of pair formation and reproduction in annual cycles and associated endocrinology in waterfowl. In: Johnston RF (ed) Current ornithology, vol 5. Plenum, New York, pp 123–186CrossRefGoogle Scholar
  2. Blums P, Mednis A (1996) Secondary sex ratio in anatinae. Auk 113:505–511CrossRefGoogle Scholar
  3. Bottitta GE, Nol E, Gilchrist HG (2003) Effects of experimental manipulation of incubation length on behavior and body mass of common eiders in the Canadian Arctic. Waterbirds 26:100–107CrossRefGoogle Scholar
  4. Choinière L, Gauthier G (1995) Energetics of reproduction in female and male greater snow geese. Oecologia 103:379–389.  https://doi.org/10.1007/BF00328628 CrossRefGoogle Scholar
  5. Clark RG, Hobson KA, Wassenaar LI (2006) Geographic variation in the isotopic (dD, d13C, d15N, d34S) composition of feathers and claws from lesser scaup and northern pintail: implications for studies of migratory connectivity. Can J Zool 1401:1395–1401.  https://doi.org/10.1139/Z06-135 CrossRefGoogle Scholar
  6. Descamps S, Gilchrist HG, Bêty J et al (2009) Costs of reproduction in a long-lived bird: large clutch size is associated with low survival in the presence of a highly virulent disease. Biol Lett 5:278–281.  https://doi.org/10.1098/rsbl.2008.0704 CrossRefGoogle Scholar
  7. Descamps S, Yoccoz NG, Gaillard J-M et al (2010) Detecting population heterogeneity in effects of North Atlantic Oscillations on seabird body condition: get into the rhythm. Oikos 119:1526–1536.  https://doi.org/10.1111/j.1600-0706.2010.18508.x CrossRefGoogle Scholar
  8. Descamps S, Bêty J, Love OP, Gilchrist HG (2011) Individual optimization of reproduction in a long-lived migratory bird: a test of the condition-dependent model of laying date and clutch size. Funct Ecol 25:671–681.  https://doi.org/10.1111/j.1365-2435.2010.01824.x CrossRefGoogle Scholar
  9. Dey CJ, Richardson E, Mcgeachy D et al (2017) Increasing nest predation will be insufficient to maintain polar bear body condition in the face of sea ice loss. Glob Change Biol 23:1821–1831.  https://doi.org/10.1111/gcb.13499 CrossRefGoogle Scholar
  10. Drent R, Both C, Green M et al (2003) Pay-offs and penalties of competing migratory schedules. Oikos 103:274–292CrossRefGoogle Scholar
  11. Fowler GS (1995) Stages of age-related reproductive success in birds: simultaneous effects of age, pair-bond duration and reproductive experience. Am Zool 35:318–328CrossRefGoogle Scholar
  12. Garcia-Perez B, Hobson KA (2014) A multi-isotope (d2H, d13C, d15N) approach to establishing migratory connectivity of Barn Swallow (Hirundo rustica). Ecosphere 5:1–12CrossRefGoogle Scholar
  13. Goudie RI, Robertson GJ, Reed A (2000) Common eider (Somateria mollissima). In: Poole A, Gill F (eds) The Birds of North America. Cornell Laboratory of Ornithology, IthacaGoogle Scholar
  14. Graham BS, Koch PL, Newsome SD et al (2010) Using isoscapes to trace the movements and foraging behavior of top predators in oceanic ecosystems. In: West JB, Bowen GJ, Dawson TE, Tu KP (eds) Isoscapes: understanding movement, pattern, and process on earth through isotope mapping. Springer, New York, pp 299–318CrossRefGoogle Scholar
  15. Guéry L, Descamps S, Pradel R et al (2017) Hidden survival heterogeneity of three common eider populations in response to climate fluctuations. J Anim Ecol 86:683–693.  https://doi.org/10.1111/1365-2656.12643 CrossRefGoogle Scholar
  16. Hahn S, Hoye BJ, Korthals H, Klaassen M (2012) From food to offspring down: tissue-specific discrimination and turn-over of stable isotopes in herbivorous waterbirds and other avian foraging guilds. PLoS ONE 7:1–6.  https://doi.org/10.1371/journal.pone.0030242 Google Scholar
  17. Hario M, Hollmén TE (2004) The role of male mate-guarding in pre-laying common eiders Somateria m. mollissima in the northern Baltic Sea. Ornis Fenn 81:119–127Google Scholar
  18. Harms NJ, Legagneux P, Gilchrist HG et al (2015) Feather corticosterone reveals effect of moulting conditions in the autumn on subsequent reproductive output and survival in an Arctic migratory bird. Proc R Soc Lond B 282:20142085CrossRefGoogle Scholar
  19. Heitmeyer ME (1995) Influences of age, body condition, and structural size on mate selection by dabbling ducks. Can J Zool 73:2251–2258CrossRefGoogle Scholar
  20. Hennin HL, Legagneux P, Bêty J et al (2015) Pre-breeding energetic management in a mixed-strategy breeder. Oecologia 177:235–243.  https://doi.org/10.1007/s00442-014-3145-x CrossRefGoogle Scholar
  21. Hennin HL, Bêty J, Legagneux P et al (2016a) Energetic physiology mediates individual optimization of breeding phenology in a migratory Arctic seabird. Am Nat 188:434–445.  https://doi.org/10.1086/688044 CrossRefGoogle Scholar
  22. Hennin HL, Wells-berlin AM, Love OP (2016b) Baseline glucocorticoids are drivers of body mass gain in a diving seabird. Ecol Evol 6:1702–1711.  https://doi.org/10.1002/ece3.1999 CrossRefGoogle Scholar
  23. Hennin HL, Dey CJ, Bêty J et al (2018) Higher rates of prebreeding condition gain positively impacts clutch size: a mechanistic test of the condition-dependent individual optimization model. Funct Ecol 32:2019–2028.  https://doi.org/10.1111/1365-2435.13133 CrossRefGoogle Scholar
  24. Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326.  https://doi.org/10.1007/s004420050865 CrossRefGoogle Scholar
  25. Hopkins JB III, Cutting KA, Warren JM (2013) Use of stable isotopes to investigate keratin deposition in the claw tips of ducks. PLoS ONE 8:1–7.  https://doi.org/10.1371/journal.pone.0081026 Google Scholar
  26. Iverson SA, Gilchrist HG, Smith PA et al (2014) Longer ice-free seasons increase the risk of nest depredation by polar bears for colonial breeding birds in the Canadian Arctic. Proc R Soc Lond B 281:1–9CrossRefGoogle Scholar
  27. Iverson SA, Forbes MR, Simard M et al (2016) Avian Cholera emergence in Arctic-nesting northern Common Eiders: using community-based, participatory surveillance to delineate disease outbreak patterns and predict transmission risk. Ecol Soc 21(4):12CrossRefGoogle Scholar
  28. Jean-Gagnon F, Legagneux P, Gilchrist HG et al (2018) The impact of sea ice conditions on breeding decisions is modulated by body condition in an arctic partial capital breeder. Oecologia 186:1–10.  https://doi.org/10.1007/s00442-017-4002-5 CrossRefGoogle Scholar
  29. Lehikoinen A, Christensen TK, Öst M et al (2008) Large-scale change in the sex ratio of a declining eider Somateria mollissima population. Wildl Biol 14:288–301.  https://doi.org/10.2981/0909-6396(2008)14[288:LCITSR]2.0.CO;2 CrossRefGoogle Scholar
  30. Love OP, Gilchrist HG, Descamps S et al (2010) Pre-laying climatic cues can time reproduction to optimally match offspring hatching and ice conditions in an Arctic marine bird. Oecologia 164:277–286.  https://doi.org/10.1007/s00442-010-1678-1 CrossRefGoogle Scholar
  31. Maechler M, Rousseeuw P, Struyf A, Hubert M (2016) Finding groups in data: cluster analysis extended. R package version 2.0.8, pp 1–80Google Scholar
  32. Mckinnon L, Gilchrist HG, Scribner KT (2006) Genetic evidence for kin-based female social structure in common eiders (Somateria mollissima). Behav Ecol 17:614–621.  https://doi.org/10.1093/beheco/ark002 CrossRefGoogle Scholar
  33. Merkel FR, Mosbech A, Sonne C et al (2006) Local movements, home ranges and body condition of common eiders Somateria mollissima wintering in Southwest Greenland. Ardea 94:639–650Google Scholar
  34. Merkel FR (2010) Evidence of recent population recovery in common eiders breeding in western Greenland. J Wildl Manag 74:1869–1874.  https://doi.org/10.2193/2009-189 CrossRefGoogle Scholar
  35. Mini AE, Harrington ER, Rucker E et al (2014) American Wigeon (Anas americana). In: Rodewald PG (ed) The Birds of North America. Cornell Laboratory of Ornithology, IthacaGoogle Scholar
  36. Mosbech A, Gilchrist HG, Merkel FR et al (2006) Year-round movements of northern common eiders Somateria mollissima borealis breeding in Arctic Canada and West Greenland followed by satellite telemetry. Ardea 94:651–665Google Scholar
  37. NOAA (2017) North Atlantic Oscillation (NAO). In: National Centers for Environmental Information. https://www.ncdc.noaa.gov/teleconnections/nao/. Accessed 9 June 2017
  38. Oppel S, Powell AN (2010) Carbon isotope turnover in blood as a measure of arrival time in migratory birds using isotopically distinct environments. J Ornithol 151:123–131.  https://doi.org/10.1007/s10336-009-0434-y CrossRefGoogle Scholar
  39. Pomerleau C, Lesage V, Winkler G et al (2014) Contemporary diet of bowhead whales (Balaena mysticetus) from the Eastern Canadian Arctic inferred from fatty acid biomarkers. Arctic 67:84–92CrossRefGoogle Scholar
  40. Robertson GJ, Cooke F, Goudie RI, Boyd WS (1998) The timing of pair formation in harlequin ducks. Condor 100:551–555.  https://doi.org/10.2307/1369723 CrossRefGoogle Scholar
  41. Robertson GJ, Gilchrist HG (1998) Evidence of population declines among common eiders breeding in the Belcher Islands. Northwest Territ 51:378–385Google Scholar
  42. Rockwell SM, Bocetti CI, Marra PP (2012) Carry-over effects of winter climate on spring arrival date and reproductive success in an endangered migratory bird, Kirtland’s warbler (Setophaga kirtlandii). Auk 129:744–752.  https://doi.org/10.1525/auk.2012.12003 CrossRefGoogle Scholar
  43. Rodway MS (2007) Timing of pairing in waterfowl I: reviewing the data and extending the theory. Waterbirds 30:488–505CrossRefGoogle Scholar
  44. Rohwer FC, Anderson MG (1988) Female-biased philopatry, monogamy, and the timing of pair formation in migratory waterfowl. In: Johnston RF (ed) Current ornithology, vol 5. Plenum, New York, pp 187–222CrossRefGoogle Scholar
  45. Rolshausen G, Hobson ÆKA, Schaefer HM (2010) Spring arrival along a migratory divide of sympatric blackcaps (Sylvia atricapilla) Oecologia.  https://doi.org/10.1007/s00442-009-1445-3 Google Scholar
  46. Sénéchal E, Bêty J, Gilchrist HG et al (2011) Do purely capital layers exist among flying birds? Evidence of exogenous contribution to Arctic-nesting common eider eggs. Oecologia 165:593–604.  https://doi.org/10.1007/s00442-010-1853-4 CrossRefGoogle Scholar
  47. Spurr E, Milne H (1976) Adaptive significance of autumn pair formation in the common eider Somateria mollissima. Scand J Ornithol 7:85–89Google Scholar
  48. Steenweg RJ, Crossin GT, Kyser TK et al (2017) Stable isotopes can be used to infer the overwintering locations of prebreeding marine birds in the Canadian Arctic. Ecol Evol.  https://doi.org/10.1002/ece3.3410 Google Scholar
  49. Venables WN, Ripley BD (2002) MASS modern applied statistics with S, fourth. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2019

Authors and Affiliations

  1. 1.Department of BiologyDalhousie UniversityHalifaxCanada
  2. 2.Université LavalQuebecCanada
  3. 3.Environment and Climate Change Canada, National Wildlife Research CentreCarleton UniversityOttawaCanada
  4. 4.Department of Geological Sciences and Geological EngineeringQueen’s UniversityKingstonCanada
  5. 5.Department of Biological SciencesUniversity of WindsorWindsorCanada

Personalised recommendations