Advertisement

Light pollution hampers recolonization of revitalised European Nightjar habitats in the Valais (Swiss Alps)

  • Antoine SierroEmail author
  • Andreas Erhardt
Original Article

Abstract

Increasing light emissions caused by human activities have been recognized as a major threat for nocturnal animals. In Switzerland, the European Nightjar is a rare bird, decreasing in numbers since the 1970s, and is therefore highly threatened. The last breeding population occurs in the canton Valais. Initial expert-based conservation measures on formerly inhabited breeding sites were successful until 2000, however recent additional measures have failed. Nightjars are highly sensitive to light due to their special retina adapted to living in semi-darkness. We hypothesized that food availability, mainly moths, is not a critical limiting factor, but that artificial light emissions prevent successful foraging as well as recolonizing revitalised breeding habitats of the nightjar. To test this hypothesis, we used light trapping data of moths from the last 30 years to evaluate food availability and compared light emission on abandoned versus still-occupied breeding sites. Abundance of larger moths did not change significantly over the last 30 years, and smaller moths even increased in abandoned as well as in still-occupied nightjar habitats. However, light emission was two to five times higher in abandoned compared to still-occupied sites. These results suggest that increasing light emission during recent decades has exceeded tolerable levels for this highly specialized night bird. Authorities of the canton Valais should therefore order a reduction in light emission near nightjar habitats by replacing bulbs currently in use with customized LED or broad-spectrum lamps low in white and blue light, and assign remaining nightjar habitats as areas of complete nocturnal darkness, thereby also protecting other threatened nocturnal animals, including moths.

Keywords

Caprimulgus europaeus Conservation measures Moth availability Nocturnal adaptation 

Zusammenfassung

Lichtverschmutzung erschwert die Wiederbesiedlung renaturierter Habitate des Ziegenmelkers im Wallis (Schweizer Alpen)

Die vom Menschen verursachte, zunehmende Lichtverschmutzung ist ein bekannter Gefährdungsfaktor für nachtaktive Tiere. In der Schweiz ist der seltene Ziegenmelker seit den 1970-iger Jahren in stetigem Rückgang begriffen und stark gefährdet. Die letzte sich fortpflanzende Population befindet sich im Kanton Wallis. Erste von Experten begründete Schutzmaßnahmen in früher besiedelten Brutgebieten waren bis ins Jahr 2000 erfolgreich. Allerdings blieben neuere zusätzliche Maßnahmen wirkungslos. Nachtschwalben sind gegenüber Licht außerordentlich empfindlich, weil ihre spezielle Retina an ein Leben in Dunkelheit adaptiert ist. Wir vermuteten, dass nicht das Angebot an Nahrung, vor allem Nachtfalter, für den Ziegenmelker ein limitierender Faktor ist, sondern dass künstliches Licht erfolgreiches Jagen und eine Wiederbesiedlung von renaturierten Brutplätzen verhindert. Um diese Hypothese zu testen, werteten wir Daten von während der letzten 30 Jahre mit Lichtfallen gefangenen Nachtfaltern aus und verglichen Lichtemissionen in verlassenen und noch immer besiedelten Brutgebieten. Die Häufigkeit größerer Nachtfalter änderte sich über die vergangenen 30 Jahre nicht signifikant. Kleinere Nachtfalter nahmen sogar in verlassenen wie auch in noch immer besiedelten Gebieten zu. Im Gegensatz dazu war die Lichtemission in verlassenen Gebieten zwei-bis fünfmal höher als in besiedelten. Diese Befunde legen nahe, dass die zunehmende Lichtemission während der letzten Jahrzehnte die Toleranzschwelle dieser hochspezialisierten nachtaktiven Vogelart überschritten hat. Die Behörden des Kanton Wallis sollten deshalb eine Reduktion der Lichtemission in der Nähe von Ziegenmelkerhabitaten anordnen und gegenwärtig benutzte Leuchtbirnen mit maßgefertigten LED oder Breitspektrumlampen mit einem tiefen Weiß-und Blaulichtanteil ersetzen. Zudem sollten sie in den noch vorhandenen Lebensräumen des Ziegenmelkers totale Dunkelheit anordnen. Damit würden auch andere gefährdete nachtaktive Tiere einschließlich der Nachtfalter geschützt.

Notes

Acknowledgements

We are deeply indebted to J.-C. Loubier and F. Cahenzli for their statistical advice, to N. von Roten for making his data available, to Pierre-Maurice Barras from Sierre-Energie SA for current lighting information and to L. Salamin for improving AS’s English. We also thank an anonymous reviewer for his valuable comments on an earlier draft of this manuscript, and the Ignace Mariétan Foundation for financial support of this project.

References

  1. Alexander I, Cresswell B (1990) Foraging by Nightjars Caprimulgus europaeus away from their nesting areas. Ibis (Lond 1859) 132:568–574.  https://doi.org/10.1111/j.1474-919X.1990.tb00280.x CrossRefGoogle Scholar
  2. Altermatt F, Ebert D (2016) Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution. Biol Lett 12:1–4.  https://doi.org/10.1098/rsbl.2016.0111 CrossRefGoogle Scholar
  3. Auclair R (1988) Synthèse d’une étude sur l’engoulevent d’Europe Caprimulgus europaeus en Allier. Le Grand-Duc 32:1–34Google Scholar
  4. Bender R (2016) Le Valais en chiffre. Rapport 2015. Office cantonal de la statistiqueGoogle Scholar
  5. Brigham RM, Barclay MR (1992) Lunar influence on foraging and nesting activity of common poorwills (Phalaenoptilus nuttallii). Auk 109:315–320CrossRefGoogle Scholar
  6. Brigham RM, Barclay RMR (1995) Prey detection by common nighthawks—does vision impose a constraint. Ecosci 2:276–279CrossRefGoogle Scholar
  7. Bruderer B, Hirschi W (1984) Langfristige Bestandsentwicklung von Gartenrötel Phoenicurus phoenicurus und Trauerschnäpper Ficedula hypoleuca. Ornithol Beobachter 81:285–302Google Scholar
  8. Conrad K, Warren M, Fox R, Parsons M, Woiwod I (2006) Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol Conserv 132:279–291.  https://doi.org/10.1016/j.biocon.2006.04.020 CrossRefGoogle Scholar
  9. Da Silva A, Valcu M, Kempenaers B (2015) Light pollution alters the phenology of dawn and dusk singing in common European songbirds. Phil Trans B R Soc 370:20140126.  https://doi.org/10.1098/rstb.2014.0126 CrossRefGoogle Scholar
  10. Davies TW, Bennie J, Gaston KJ (2012) Street lighting changes the composition of invertebrate communities. Biol Lett 8:764–767.  https://doi.org/10.1098/rsbl.2012.0216 CrossRefGoogle Scholar
  11. de Jong M, Ouyang JQ, Da Silva A, van Grunsven RHA, Kempenaers B, Visser M, Spoelstra K (2015) Effects of nocturnal illumination on life-history decisions and fitness in two wild songbird species. Philos Trans B 370:20140128.  https://doi.org/10.1098/rstb.2014.0128 CrossRefGoogle Scholar
  12. Debrot AO (2014) Nocturnal foraging by artificial light in three Caribbean bird species. J Caribb Ornithol 27:40–41Google Scholar
  13. Eisenbeis G (2006) Artificial night lighting and insects: attraction of insects to streetlamps in a rural setting in Germany. In: Rich C, Longcore T (eds) Ecological consequences of artificial night lighting. Washington, p 281–304Google Scholar
  14. Epule ET, Peng C, Lepage L, Chen Z (2014) The causes, effects and challenges of Sahelian droughts: a critical review. Reg Environ Chang 14:145–156.  https://doi.org/10.1007/s10113-013-0473-z CrossRefGoogle Scholar
  15. Evens R, Beenaerts N, Witters N, Artois T (2017a) Study on the foraging behaviour of the European Nightjar Caprimulgus europaeus reveals the need for a change in conservation strategy in Belgium. J Avian Biol 48:1238–1245.  https://doi.org/10.1111/jav.00996 CrossRefGoogle Scholar
  16. Evens R, Conway GJ, Henderson IG, Cresswell B, Jiguet F, Moussy C, Sénécal D, Witters N, Beenaerts N, Artois T (2017b) Migratory pathways, stopover zones and wintering destinations of western European Nightjars Caprimulgus europaeus. Ibis (Lond 1859) 159:680–686.  https://doi.org/10.1111/ibi.12469 CrossRefGoogle Scholar
  17. Evens R, Beenaerts N, Neyens T, Witters N, Smeets K, Artois T (2018) Proximity of breeding and foraging areas affects foraging effort of a crepuscular, insectivorous bird. Sci Rep 8:1–11.  https://doi.org/10.1038/s41598-018-21321-0 CrossRefGoogle Scholar
  18. Falchi F, Duriscoe DM, Kyba CCM, Falchi F, Cinzano P, Duriscoe D, Kyba CCM, Elvidge CD, Baugh K, Portnov BA, Rybnikova NA, Furgoni R (2016) The new world atlas of artificial night sky brightness. Sci Adv 2:e1600377.  https://doi.org/10.1126/sciadv.1600377 CrossRefGoogle Scholar
  19. Favre M, Clavien C, Richoz P, Favre G, Emery S, Coupy G, Carré D, Balleys PD, Buchard J-B, Roduit P-A (2016) Année vitivinicole 2015 Rapport annuel. Office cantonal de la viticulture. SionGoogle Scholar
  20. Fox R (2013) The decline of moths in Great Britain: a review of possible causes. Insect Conserv Divers 6:5–19.  https://doi.org/10.1111/j.1752-4598.2012.00186.x CrossRefGoogle Scholar
  21. Fox R, Parsons MS, Chapman JW, Woiwod IP, Warren MS, Brooks DR (2013) The state of Britain’s larger moths 2013. Butterfly conservation. Rothamsted Research. Manor Yard, East Lulworth, Wareham, DorsetGoogle Scholar
  22. Fox R, Oliver TH, Harrower C, Parsons MS, Thomas CD, Roy DB (2014) Long-term changes to the frequency of occurrence of British moths are consistent with opposing and synergistic effects of climate and land-use changes. J Appl Ecol 51:949–957.  https://doi.org/10.1111/1365-2664.12256 CrossRefGoogle Scholar
  23. Frei C, Schär C, Lüthi C, Davies Huw C (1998) Heavy precipitation process in a warmer climate. Geophys Res Lett 25:1431–1434CrossRefGoogle Scholar
  24. Gragera FD (2015) Tacticas de caza del chotacabras cuellirrojo en la costa malaguena. Quercus 355:33–35Google Scholar
  25. Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, Stenmans W, Müller A, Sumser H, Hörren T, Goulson D, de Kroon H (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12:e0185809.  https://doi.org/10.1371/journal.pone.0185809 CrossRefGoogle Scholar
  26. Heller K, Arlettaz R (1994) Is there a sex ratio bias in the bushcricket prey of the scops owl due to predation on calling males? J Orthoptera Res 2:41–42CrossRefGoogle Scholar
  27. Hoblyn R, Morris T (1997) Nightjar. In: Hagemeijer WJM, Blair MJ (eds) The EBCC Atlas of European breeding birds. Their distribution and abundance. Poyser, London, pp 422–423Google Scholar
  28. Hölker F, Wolter C, Perkin EK, Tockner K (2010) Light pollution as a biodiversity threat. Trends Ecol Evol 25:681–682.  https://doi.org/10.1016/j.tree.2010.09.007 CrossRefGoogle Scholar
  29. Huntley B, Green RE, Collingham YC, Willis SG (2007) A climatic Atlas of European breeding birds. Durham University, RSPB, Lynx EdicionGoogle Scholar
  30. Issa N, Müller Y (2016) Atlas des oiseaux nicheurs de France métropolitaine. Delachaux & Niestlé, ParisGoogle Scholar
  31. Jetz W, Steffen J, Linsenmair KE (2003) Effects of light and prey availability on nocturnal, lunar and seasonal activity of tropical nightjars. Oikos 103:627–639CrossRefGoogle Scholar
  32. Keller V, Gerber A, Schmid H, Volet B, Zbinden N (2010) Liste rouge oiseaux nicheurs. Espèces menacées en Suisse, état 2010. Office fédéral de l’environnement, Berne et Station ornithologique suisse, SempachGoogle Scholar
  33. Knaus P, Antoniazza S, Wechsler S, Guélat J, Kéry M, Strebel N, Sattler T (2018) Atlas des oiseaux nicheurs de Suisse. Distribution des oiseaux nicheurs en Suisse 2013–2016. Distribution et évolution des effectifs des oiseaux en Suisse et au Lichtenstein. Station orntihologique suisse, SempachGoogle Scholar
  34. Knop E, Zoller L, Ryser R, Gerpe C, Hörler M, Fontaine C (2017) Artificial light at night as a new threat to pollination. Nat 548:206–209.  https://doi.org/10.1038/nature23288 CrossRefGoogle Scholar
  35. Kyba CCM, Tong KP, Bennie J, Birriel I, Birriel JJ, Cool A, Danielsen A, Davies TW, Outer PN Den, Edwards W, Ehlert R, Falchi F (2015) Worldwide variations in artificial skyglow. Sci. Rep. 5:1–6.  https://doi.org/10.1038/srep08409 Google Scholar
  36. Lachat T, Pauli D, Gonseth Y, Klaus G, Scheidegger C, Vittoz P, Walter T (2011) Evolution de la biodiversité en Suisse depuis 1900. Avons-nous touché le fond? Zürich, Bristol-Stiftung. Haupt Verlag, BernGoogle Scholar
  37. Langston RHW, Liley D, Murison G, Woodfield E, Clarke RT (2007) What effects do walkers and dogs have on the distribution and productivity of breeding European Nightjar Caprimulgus europaeus? Ibis (Lond 1859). 149:27–36.  https://doi.org/10.1111/j.1474-919X.2007.00643.x
  38. Le Corre M, Ollivier A, Ribes S, Jouventin P (2002) Light-induced mortality of petrels: a 4-year study from Reunion Island (Indian Ocean). Biol Conserv 105:93–102.  https://doi.org/10.1016/S0006-3207(01)00207-5 CrossRefGoogle Scholar
  39. Leather SR (2018) “Ecological Armageddon”—more evidence for the drastic decline in insect numbers. Ann. Appl. Biol. 172:1–3.  https://doi.org/10.1111/aab.12410 CrossRefGoogle Scholar
  40. Liley D, Clarke RT (2003) The impact of urban development and human disturbance on the numbers of nightjar Caprimulgus europaeus on heathlands in Dorset. England. Biol. Conserv. 114:219–230.  https://doi.org/10.1016/S0006-3207(03)00042-9 CrossRefGoogle Scholar
  41. Longcore T, Aldern HL, Eggers JF, Flores S, Franco L, Hirshfield-Yamanishi E, Petrinec LN, Yan WA, Yamanishi E, Ln P, Wa Y, Am B, Longcore T (2015) Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods. Philos Trans B R Soc 370:20140125.  https://doi.org/10.1098/rstb.2014.0125 CrossRefGoogle Scholar
  42. Longcore T, Rich C (2004) Ecological light pollution. Front Ecol Environ 2:191–198.  https://doi.org/10.2307/3868314 CrossRefGoogle Scholar
  43. Lowe A, Rogers AC, Durrant KL (2014) Effect of human disturbance on long-term habitat use and breeding success of the European Nightjar Caprimulgus europaeus. Avian Conserv. Ecol. 9:6.  https://doi.org/10.5751/ACE-00690-090206 CrossRefGoogle Scholar
  44. Macgregor CJ, Evans DM, Fox R, Pocock MJO (2016) The dark side of street lighting: impacts on moths and evidence for the disruption of nocturnal pollen transport. Glob. Chang. Biol. 23:697–707.  https://doi.org/10.1111/gcb.13371 CrossRefGoogle Scholar
  45. Mills AM (1986) The influence of moonlight on the behavior of goatsuckers (Caprimulgidae). Auk 103:370–378.  https://doi.org/10.2307/4087090 Google Scholar
  46. Nicol JAC, Arnott HJ (1974) Tapeta Lucida in the eyes of goatsuckers Caprimulgidae. Proc. R. Soc. B 187:349–352Google Scholar
  47. Plummer KE, Hale JD, Callaghan MJO, Sadler JP, Siriwardena GM (2016) Investigating the impact of street lighting changes on garden moth communities. J. Urban Ecol.  https://doi.org/10.1093/jue/juw004 Google Scholar
  48. Raap T, Pinxten R, Eens M (2015) Light pollution disrupts sleep in free-living animals. Sci. Rep.  https://doi.org/10.1038/srep13557 Google Scholar
  49. Raap T, Pinxten R, Eens M (2016) Artificial light at night disrupts sleep in female great tits (Parus major) during the nestling period, and is followed by a sleep rebound. Environ Pollut 215:125–134.  https://doi.org/10.1016/j.envpol.2016.04.100 CrossRefGoogle Scholar
  50. Revaz E (1999) Chronique ornithologique valaisanne: de l’hiver 1997–1998 à l’automne 1998. Bull. Murithienne 117:73–87Google Scholar
  51. Rodríguez A, Dann P, Chiaradia A (2017a) Reducing light-induced mortality of seabirds: high pressure sodium lights decrease the fatal attraction of shearwaters. J Nat Conserv 39:68–72.  https://doi.org/10.1016/j.jnc.2017.07.001 CrossRefGoogle Scholar
  52. Rodríguez A, Holmes ND, Ryan PG, Wilson KJ, Faulquier L, Murillo Y, Raine AF, Penniman JF, Neves V, Rodríguez B, Negro JJ, Chiaradia A, Dann P, Anderson T, Metzger B, Shirai M, Deppe L, Wheeler J, Hodum P, Gouveia C, Carmo V, Carreira GP, Delgado-Alburqueque L, Guerra-Correa C, Couzi FX, Travers M, Corre M Le (2017b) Seabird mortality induced by land-based artificial lights. Conserv Biol.  https://doi.org/10.1111/cobi.12900 Google Scholar
  53. Rodríguez A, Moffett J, Revoltós A, Wasiak P, McIntosh RR, Sutherland DR, Renwick L, Dann P, Chiaradia A (2017c) Light pollution and seabird fledglings: targeting efforts in rescue programs. J Wildl Manag 81:734–741.  https://doi.org/10.1002/jwmg.21237 CrossRefGoogle Scholar
  54. SCA (2017) Etat de situation de l’agriculture valaisanne. Rapport statistique 2016. Châteauneuf-SionGoogle Scholar
  55. Schaub M, Martinez NM, Tagmann-Ioset A, Weisshaupt N, Maurer M, Reichlin TS, Abadi F, Zbinden N, Jenni L, Arlettaz R (2010) Patches of bare ground as a staple commodity for declining ground-foraging insectivorous farmland birds. PLoS ONE 5(10):e13115.  https://doi.org/10.1371/journal.pone.0013115 CrossRefGoogle Scholar
  56. Schifferli L, Géroudet P, Winkler R, Jacquat B, Jean-Claude P (1980) Atlas des oiseaux nicheurs de Suisse (1972–1976). Station orntihologique suisse, SempachGoogle Scholar
  57. Schlegel R (1973) Der Ziegenmelker. Neue Brehm BüchereiGoogle Scholar
  58. Schmid H, Luder R, Naef-Daenzer B, Graf R, Zbinden N (1998) Atlas des oiseaux nicheurs de Suisse. Distribution des oiseaux nicheurs en Suisse et au Lichtenstein en 1993–1996. Station ornithologique suisse, SempachGoogle Scholar
  59. Sharps K, Henderson IAN, Conway G, Armour- N, Dolman PM (2015) Home-range size and habitat use of European Nightjars. Ibis (Lond 1859).  https://doi.org/10.1111/ibi.12251 Google Scholar
  60. Sierro A (1991) Ecologie de l’Engoulevent, Caprimulgus europaeus, en Valais (Alpes suisses): biotopes, répartition spatiale et protection. Nos Oiseaux 41:209–235Google Scholar
  61. Sierro A (2016) Interventions forestières en faveur de l’ Engoulevent en Valais (Alpes suisses). Bilan de 22 ans d’expérience (1993-2014). Station ornithologique, SempachGoogle Scholar
  62. Sierro A, Rey E (2007) Mesures de conservation et suivi de l’Engoulevent Caprimulgus europaeus en Valais: bilan 2007. Mesures de conservation, suivi de populations témoins et prospections élargies. Rapport interne. Station ornithologique suisseGoogle Scholar
  63. Sierro A, Strebel S, Naef-Daenzer B (1995) Ecologie de l’engoulevent Carpimulgus europaeus en Valais. Rapport interne. Station ornithologique suisse, SempachGoogle Scholar
  64. Sierro A, Arlettaz R, Naef-Daenzer B, Strebel S, Zbinden N (2001) Habitat use and foraging ecology of the nightjar in the Swiss Alps: towards a conservation scheme. Biol Conserv 98:325–331.  https://doi.org/10.1016/S0006-3207(00)00175-0 CrossRefGoogle Scholar
  65. Squires WA, Hanson HE (1918) The destruction of birds at the lighthouses on the coast of California. Condor 20:6.  https://doi.org/10.2307/1362354 CrossRefGoogle Scholar
  66. Sutherland WJ, Pullin AS, Dolman PM, Knight TM (2004) The need for evidence-based conservation. Trends Ecol Evol 19:305–308.  https://doi.org/10.1016/j.tree.2004.03.018 CrossRefGoogle Scholar
  67. van Geffen KG, Van Grunsven RHA, Van Ruijven J, Berendse F, Veenendaal EM (2014) Artificial light at night causes diapause inhibition and sex-specific life history changes in a moth. Evol, Ecol.  https://doi.org/10.1002/ece3.1090 CrossRefGoogle Scholar
  68. van Geffen KG, Groot AT, van Grunsven RHA, Donners M, Berendse F, Veenendaal EM (2015a) Artificial night lighting disrupts sex pheromone in a noctuid moth. Ecol Entomol 1:1.  https://doi.org/10.1111/een.12202 Google Scholar
  69. van Geffen KG, van Eck E, de Boer RA, van Grunsven RHA, Salis L, Berendse F, Veenendaal EM (2015b) Artificial light at night inhibits mating in a Geometrid moth. Insect Conserv Divers.  https://doi.org/10.1111/icad.12116 Google Scholar
  70. van Langevelde F, Ettema JA, Donners M, WallisDeVries MF, Groenendijk D (2011) Effect of spectral composition of artificial light on the attraction of moths. Biol Conserv 144:2274–2281.  https://doi.org/10.1016/j.biocon.2011.06.004 CrossRefGoogle Scholar
  71. van Langevelde F, van Grunsven RHA, Veenendaal EM, Fijen TPM (2017) Artificial night lighting inhibits feeding in moths. Biol Lett.  https://doi.org/10.1098/rsbl.2016.0874 Google Scholar
  72. van Langevelde F, Braamburg-Annegarn M, Huigens ME, Groendijk R, Poitevin O, van Deijk JR, Ellis WN, van Grunsven RHA, de Vos R, Vos RA, Franzén M, WallisDeVries MF (2018) Declines in moth populations stress the need for conserving dark nights Glob Change Biol 24:925–932.  https://doi.org/10.1111/gcb.14008
  73. Werner P (1988) La flore du Valais. Editions Pillet, MartignyGoogle Scholar
  74. Wichmann G (2004) Habitat use of nightjar (Caprimulgus europaeus) in an Austrian pine forest. J Ornithol 145:69–73.  https://doi.org/10.1007/s10336-003-0013-6 CrossRefGoogle Scholar
  75. Winiger N, Korner P, Arlettaz R, Jacot A (2018) Vegetation structure and decreased moth abundance limit the recolonisation of restored habitat by the European Nightjar. Rethink Ecol 3:25–39.  https://doi.org/10.3897/rethinkingecology.3.29338 CrossRefGoogle Scholar
  76. Witt K, Völker F, Steffens R, Sudmann SR, Stübing S (2015) Atlas Deutscher Brutvogelarten. Dachverband Deutscher Avifaunisten und Stiftung Vogelwelt Deutschland, MünsterGoogle Scholar
  77. Wohlgemuth T, Brigger A, Gerold P, Laranjeiro L, Moretti M, Moser B, Rebetez M, Schmatz D, Schneiter G, Sciacca S, Sierro A, Weibel P, Zumbrunnen T (2010) Merkblatt für die Praxis Leben mit Waldbrand. Eidgenössische Forschungsanstalt WSL, BirmensdorfGoogle Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2019

Authors and Affiliations

  1. 1.Conservation Nature and PaysageSierreSwitzerland
  2. 2.Department of Environmental Sciences, BotanyUniversity of BaselBaselSwitzerland

Personalised recommendations