Advertisement

Habitat choice shapes the spring stopover behaviour of a Nearctic-Neotropical migratory songbird

  • Nicholas J. BaylyEmail author
  • Kenneth V. Rosenberg
  • Camila Gómez
  • Keith A. Hobson
Original Article

Abstract

The effect of habitat choice on fuelling behaviour and the organization of migration in birds has rarely been examined, despite the potential impact of widespread anthropogenic transformation of stopover regions. High energetic requirements in migrating birds mean that resource abundance, through its influence on fuel deposition rates (FDR), is expected to be the main determinant of stopover and migration strategy. We examined the spring stopover of Tennessee Warblers (Oreothlypis peregrina) in northern Colombia, evaluating how diet, FDR, stopover duration, departure mass and estimated flight range varied between two commonly used stopover habitats: shade coffee plantations and pre-montane forests. Diet included insects in both habitats, but fruit was only consumed in pre-montane forest, where FDR was highest (FDR forest = 2.4% LBM/day; coffee = 0.5% LBM/day). Three different estimates of stopover duration suggested longer stays in coffee but lengthier durations did not result in equivalent departure mass between habitats, such that estimated flight range was twice as long for birds departing forest (2000 km) relative to coffee (1088 km). We conclude that stopover performance differed between habitats, likely influencing the subsequent temporal and spatial organization of spring migration. On the basis of flight ranges, stopovers in shade coffee may also increase the risks of trans-Caribbean flights, suggesting a mechanism by which stopover habitat could directly influence survival. Given that fruit consumption in forest probably explains these differences, we recommend the identification of appropriate fruiting trees for Neotropical agroforestry systems that can tolerate a variety of conditions and increase the quality of these anthropogenic habitats for migratory and other frugivorous birds.

Keywords

Agroforestry Colombia Diet Fuel deposition rate Flight range Migration Shade coffee Stopover duration Tennessee Warbler 

Zusammenfassung

Habitatwahl beeinflusst die Frühjahrsrast eines nearktisch-neotropischen Zugvogels

Die Wahl des Habitats und ihr möglicher Einfluss auf das “Auftanken” und die gesamte Organisation des Zuges von Vögeln ist bislang noch kaum untersucht worden, trotz der potentiell großen Folgen der überall zu beobachtenden anthropogenen Veränderungen der Rasthabitate der Vögel. Die hohen Energieanforderungen ziehender Vögel bedeuten, dass das Vorhandensein ausreichend ergiebiger Nahrungsquellen wegen ihrer Auswirkungen auf die Energiespeicherung (fuel deposition rate – FDR) der wichtigste Einzelfaktor ist, der über das Einlegen von Zwischenstopps und die Zugstrategien generell entscheidet. Wir untersuchten die Frühjahrsrast des Brauenwaldsängers (Oreothlypis peregrina) in Nord-Kolumbien und versuchten einzuschätzen, inwieweit sich Nahrung, FDR, Dauer des Zwischenstopps, Körpermasse beim Abflug und Flugreichweiten von zwei üblicherweise genutzter Rasthabitate - schattige Kaffeeplantagen bzw. prämontane Wälder - unterschieden. Die Nahrung bestand in beiden Habitaten aus Insekten, wohingegen Früchte nur in den prämontanen Waldgebieten verzehrt wurden. Dort waren die FDR am höchsten (Wald: 2.4% LBM/Tag; Kaffeeplantage: 0.5% LBM/Tag). Drei unterschiedliche Methoden zur Einschätzung der Rastdauer zeigten allesamt eine längere Verweildauer in den Kaffeeplantagen, doch diese längeren Aufenthalte bedingten keine ähnlichen Abflugkörpermassen, woraus sich für Vögel der Wälder eine doppelt so weite, errechnete Flugdistanz ergab als für Vögel aus den Kaffeeplantagen (2000 km vs. 1088 km). Wir schließen daraus, dass sich das Rastvermögen der Vögel von Habitat zu Habitat unterscheidet und so wahrscheinlich die gesamte zeitliche und räumliche Organisation des Frühjahrszuges beeinflusst. Ausgehend von den Flugreichweiten erhöhen Zwischenstopps in den Kaffeeplantagen möglicherweise das Risiko des trans-karibischen Zugs und lassen einen Mechanismus vermuten, der über das Rasthabitat die Überlebenschancen der Zugvögel unmittelbar beeinflusst. Wenn tatsächlich in den Wäldern die Ernährung mit Früchten diese Unterschiede erklärt, empfehlen wir für die Landwirtschaft in den Neotropen herauszufinden, welche Früchte-tragenden Bäume ein möglichst weites Spektrum unterschiedlicher Bedingungen tolerieren und somit die Qualität anthropogener Habitate für Zugvögel und andere Früchtefresser erhöhen können.

Notes

Acknowledgements

This study was financed by Rufford Small Grants Foundation, Environment Canada and the Cornell Lab of Ornithology. We thank Mickey and Claudia Weber for providing unequivocal support for our work at Finca La Victoria. We thank our research assistants Laura Cárdenas, Valentina Gómez, Hernán Arias and Jeyson Sanabria for their company and devotion to collecting high quality data. Esteban Botero provided important comments that helped improve this manuscript. Corpamag issued the research permit for this project. We thank two anonymous reviewers for their highly constructive comments.

References

  1. Alerstam T (2001) Detours in bird migration. J Theor Biol 209:319–331.  https://doi.org/10.1016/S0169-5347(01)02258-3 CrossRefGoogle Scholar
  2. Alerstam T (2011) Optimal bird migration revisited. J Ornithol 152:5–23CrossRefGoogle Scholar
  3. Alerstam T, Lindström A (1990) Optimal bird migration: the relative importance of time, energy and safety. In: Gwinner E (ed) Bird migration: the physiology and ecophysiology. Springer, Berlin, pp 331–351CrossRefGoogle Scholar
  4. Atkinson PW, Baker AJ, Bennett KA et al (2007) Rates of mass gain and energy deposition in red knot on their final spring staging site is both time- and condition-dependent. J Appl Ecol 44:885–895.  https://doi.org/10.1111/j.1365-2664.2007.01308.x CrossRefGoogle Scholar
  5. Bairlein F (1998) The effect of diet composition on migratory fuelling in garden warblers Sylvia borin. J Avian Biol 29:546–551CrossRefGoogle Scholar
  6. Baker AJ, González PM, Piersma T et al (2004) Rapid population decline in red knots: fitness consequences of decreased refuelling rates and late arrival in Delaware Bay. Proc R Soc Lond B 271:875–882.  https://doi.org/10.1098/rspb.2003.2663 CrossRefGoogle Scholar
  7. Bakermans M, Rodewald AD, Vitz AC, Rengifo CG (2012) Migratory bird use of shade coffee: the role of structural and floristic features. Agrofor Syst 85:85–94CrossRefGoogle Scholar
  8. Bayly NJ, Gómez C, Hobson KA et al (2012a) Fall migration of the Veery (Catharus fuscescens) in northern Colombia: determining the energetic importance of a stopover site. Auk 129:449–459.  https://doi.org/10.1525/auk.2012.11.188 CrossRefGoogle Scholar
  9. Bayly NJ, Paez A, Gómez C, Mora C (2012b) Conservation hotspots for migratory landbirds in the Sierra Nevada de Santa Marta. Colombia, BogotáGoogle Scholar
  10. Bayly NJ, Gómez C, Hobson KA (2013) Energy reserves stored by migrating Gray-cheeked Thrushes Catharus minimus at a spring stopover site in northern Colombia are sufficient for a long-distance flight to North America. Ibis 155:271–283.  https://doi.org/10.1111/ibi.12029 CrossRefGoogle Scholar
  11. Bayly NJ, Gomez C, Hobson KA, Rosenberg KV (2016) Prioritizing tropical habitats for long-distance migratory songbirds—an assessment of habitat quality at a stopover site in Colombia. Avian Conserv Ecol 11:5CrossRefGoogle Scholar
  12. Bayly NJ, Rosenberg KV, Easton WE et al (2018) Major stopover regions and migratory bottlenecks for Nearctic-Neotropical landbirds within the Neotropics: a review. Bird Conserv Int 28:1–26CrossRefGoogle Scholar
  13. Bibby CJ, Green RE (1981) Autumn migration strategies of reed and sedge warblers. Ornis Scand 12:1–12CrossRefGoogle Scholar
  14. Botero-Delgadillo E, Bayly NJ, Gómez C et al (2015) An assessment of the distribution, population size and conservation status of the Santa Marta Foliage-gleaner Automolus rufipectus: a Sierra Nevada de Santa Marta endemic. Bird Conserv Int 25:451–465CrossRefGoogle Scholar
  15. Buler JJ, Moore FR, Woltmann S (2007) A multi-scale examination of stopover habitat use by birds. Ecology 88:1789–1802.  https://doi.org/10.1890/06-1871.1 CrossRefGoogle Scholar
  16. Burnham KP, Anderson DR (2002) Model selection and multinomial inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  17. Callo PA, Morton ES, Stutchbury BJM (2013) Prolonged spring migration in the Red-Eyed Vireo (Vireo olivaceus). Auk 130:240–246.  https://doi.org/10.1525/auk.2013.12213 CrossRefGoogle Scholar
  18. Cohen EB, Pearson SM, Moore FR (2014) Effects of landscape composition and configuration on migrating songbirds: inference from an individual-based model. Ecol Appl 24:169–180.  https://doi.org/10.1890/12-1867.1 CrossRefGoogle Scholar
  19. Connell CE, Odum EP, Kale H (1960) Fat-free weights of birds. Auk 77:1–9CrossRefGoogle Scholar
  20. Delingat J, Bairlein F, Hedenström A (2007) Obligatory barrier crossing and adaptive fuel management in migratory birds: the case of the Atlantic crossing in Northern Wheatears (Oenanthe oenanthe). Behav Ecol Sociobiol 62:1069–1078.  https://doi.org/10.1007/s00265-007-0534-8 CrossRefGoogle Scholar
  21. DeLuca WV, Woodworth BK, Rimmer CC et al (2015) Transoceanic migration by a 12 g songbird. Biol Lett 11:20141045CrossRefGoogle Scholar
  22. Duijns S, Niles LJ, Dey A, Aubry Y, Friis C, Koch S, Anderson AM, Smith PA (2017) Body condition explains migratory performance of a long-distance migrant. Proc R Soc B 284:20171374.  https://doi.org/10.1098/rspb.2017.1374 CrossRefGoogle Scholar
  23. Efford MG (2005) Migrating birds stop over longer than usually thought: comment. Ecology 86:3415–3418CrossRefGoogle Scholar
  24. Etter A, McAlpine C, Wilson K et al (2006) Regional patterns of agricultural land use and deforestation in Colombia. Agric Ecosyst Environ 114:369–386.  https://doi.org/10.1016/j.agee.2005.11.013 CrossRefGoogle Scholar
  25. Faaborg J, Holmes RT, Anders AD et al (2010) Conserving migratory land birds in the New World: do we know enough? Ecol Appl 20:398–418CrossRefGoogle Scholar
  26. Finch T, Pearce-Higgins J, Leech DI, Evans K (2014) Carry-over effects from passage regions are more important than breeding climate in determining the breeding phenology and performance of three avian migrants of conservation concern. Biodivers Conserv 23:2427–2444.  https://doi.org/10.1007/s10531-014-0731-5 CrossRefGoogle Scholar
  27. Fuller RA, Bearhop S, Metcalfe NB, Piersma T (2013) The effect of group size on vigilance in Ruddy Turnstones Arenaria interpres varies with foraging habitat. Ibis 155:246–257.  https://doi.org/10.1111/ibi.12020 CrossRefGoogle Scholar
  28. Gómez C, Gómez-Bahamón V, Cárdenas-Ortiz L, Bayly N (2015) Distribution of Nearctic-Neotropical migratory birds along a South American elevation gradient during spring migration. Wilson J Ornithol 127:72–86CrossRefGoogle Scholar
  29. Gómez C, Bayly NJ, Norris DR et al (2017) Fuel loads acquired at a stopover site influence the pace of intercontinental migration in a boreal songbird. Sci Rep 7:3405CrossRefGoogle Scholar
  30. Graber RR, Graber JW (1962) Weight characteristics of birds killed in nocturnal migration. Wilson Bull 74:74–88Google Scholar
  31. Harrison XA, Blount JD, Inger R et al (2011) Carry-over effects as drivers of fitness differences in animals. J Anim Ecol 80:4–18.  https://doi.org/10.1111/j.1365-2656.2010.01740.x CrossRefGoogle Scholar
  32. Heckscher CM, Taylor SM, Fox JW, Afanasyev V (2011) Veery (Catharus fuscescens) wintering locations, migratory connectivity, and a revision of its winter range using Geolocator technology. Auk 128:531–542CrossRefGoogle Scholar
  33. Holmes RT (2007) Understanding population change in migratory songbirds: long-term and experimental studies of Neotropical migrants in breeding and wintering areas. Ibis 149:2–13.  https://doi.org/10.1111/j.1474-919x.2007.00685.x CrossRefGoogle Scholar
  34. IDEAM (2010) Leyenda Nacional de Coberturas de la Tierra. Metodología CORINE Land Cover adaptada para Colombia Escala 1:100.000. Bogotá, ColombiaGoogle Scholar
  35. Johnson MD, Sherry TW, Holmes RT, Marra PP (2006) Assessing habitat quality for a migratory songbird wintering in natural and agricultural habitats. Conserv Biol 20:1433–1444.  https://doi.org/10.1111/j.1523-1739.2006.00490.x CrossRefGoogle Scholar
  36. Kaiser A (1993) A new multi-category classification of subcutaneous fat deposits of songbirds. J Field Ornithol 64:246–255Google Scholar
  37. Komar O (2006) Ecology and conservation of birds in coffee plantations: a critical review. Bird Conserv Int 16:1–23.  https://doi.org/10.1017/S0959270906000074 CrossRefGoogle Scholar
  38. La Sorte FA, Fink D, Hochachka WM et al (2014) The role of atmospheric conditions in the seasonal dynamics of North American migration flyways. J Biogeogr 41:1685–1696CrossRefGoogle Scholar
  39. Liu M, Swanson DL (2015) Stopover duration, movement patterns and temporary home ranges of fall migrant yellow-rumped Warblers Setophaga coronata in native and anthropogenic woodlands of the Northern Prairie region, USA. J Avian Biol.  https://doi.org/10.1111/jav.00672 Google Scholar
  40. Mills AM, Thurber BG, Mackenzie SA, Taylor PD (2011) Passerines use nocturnal flights for landscape-scale movements during migration stopover. Condor 113:597–607CrossRefGoogle Scholar
  41. Moore FR, Buler JJ (2011) Migrant–habitat relationships during stopover along an ecological barrier: extrinsic constraints and conservation implications. J Ornithol 152:101–112CrossRefGoogle Scholar
  42. Morris SR, Larracuente AM, Covino KM, Mustillo MS, Mattern KE, Liebner DA, Sheets D (2006) Utility of open population models: limitations posed by parameter estimability in the study of migratory stopover. Wilson J Ornithol 118:513–526CrossRefGoogle Scholar
  43. Neto JM, Encarnação V, Fearon P, Gosler AG (2008) Autumn migration of Savi’s Warblers Locustella luscinioides in Portugal: differences in timing, fuel deposition rate and non-stop flight range between the age classes. Bird Study 55:78–85.  https://doi.org/10.1080/00063650809461507 CrossRefGoogle Scholar
  44. Newton I (2006) Can conditions experienced during migration limit the population levels of birds? J Ornithol 147:146–166.  https://doi.org/10.1007/s10336-006-0058-4 CrossRefGoogle Scholar
  45. Norris DR, Marra PP, Kyser TK et al (2004) Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc R Soc Lond B 271:59–64.  https://doi.org/10.1098/rspb.2003.2569 CrossRefGoogle Scholar
  46. Pennycuick CJ (2008) Modelling the flying bird. Elsevier, LondonGoogle Scholar
  47. Perfecto I, Rice RA, Greenberg R, van der Voort M (1996) Shade coffee: a disappearing refuge for biodiversity. Bioscience 46:598–608CrossRefGoogle Scholar
  48. Pyle P (1997) Identification guide to North American birds, Part II: Columbidae to Ploceidae. Slate Creek Press, BolinasGoogle Scholar
  49. R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  50. Robbins CS, Sauer JR, Greenberg RS, Droege S (1989) Population declines in North American birds that migrate to the neotropics. Proc Natl Acad Sci USA 86:7658–7662CrossRefGoogle Scholar
  51. Rosenberg KV, Kennedy JA, Dettmers R et al (2016) Partners in flight landbird conservation plan: 2016 revision for Canada and continental United States. Cornell Lab of Ornithology, IthacaGoogle Scholar
  52. Russell RW, Carpenter FL, Hixon MA, Paton DC (1994) The impact of variation in stopover habitat quality on migrant Rufous Hummingbirds. Conserv Biol 8:483–490.  https://doi.org/10.1046/j.1523-1739.1994.08020483.x CrossRefGoogle Scholar
  53. Sauer JR, Hines JE, Pardieck KL et al (2014) The North American breeding bird survey, results and analysis 1966—2013. In: Version 01.30.2015. http://www.mbr-pwrc.usgs.gov. Accessed 20 Aug 2015
  54. Schaub M, Pradel R, Jenni L, Lebreton JD (2001) Migrating birds stop over longer than usually thought: an improved capture-recapture analysis. Ecology 82:852–859Google Scholar
  55. Sheehy J, Taylor CM, McCann KS, Norris DR (2010) Optimal conservation planning for migratory animals: integrating demographic information across seasons. Conserv Lett 3:192–202.  https://doi.org/10.1111/j.1755-263X.2010.00100.x CrossRefGoogle Scholar
  56. Sherry TW, Holmes RT (1996) Winter habitat quality, population limitation and conservation of Neotropical–Nearctic migrant birds. Ecology 77:36–48CrossRefGoogle Scholar
  57. Smith SB, McPherson KH, Backer JM et al (2007) Fruit quality and consumption by songbirds during autumn migration. Wilson J Ornithol 119:419–428CrossRefGoogle Scholar
  58. Stiles FG, Skutch AF (1989) A guide to the birds of Costa Rica. Cornell University Press, IthacaGoogle Scholar
  59. Strandberg R, Klaassen RHG, Hake M, Alerstam T (2010) How hazardous is the Sahara Desert crossing for migratory birds? Indications from satellite tracking of raptors. Biol Lett 6:297–300.  https://doi.org/10.1098/rsbl.2009.0785 CrossRefGoogle Scholar
  60. Taylor PD, Mackenzie SA, Thurber BG, Calvert AM, Mills AM, McGuire LP, Guglielmo CG (2011) Landscape movements of migratory birds and bats reveal an expanded scale of stopover. PLoS One 6(11):e27054.  https://doi.org/10.1371/journal.pone.0027054 CrossRefGoogle Scholar
  61. Tejeda-Cruz C, Sutherland WJ (2004) Bird responses to shade coffee production. Anim Conserv 7:169–179.  https://doi.org/10.1017/S1367943004001258 CrossRefGoogle Scholar
  62. Wassenaar T, Gerber P, Verbury P et al (2007) Projecting land use changes in the Neotropics: the geography of pasture expansion into forest. Glob Environ Chang 17:86–104CrossRefGoogle Scholar
  63. Welton MJ, Anderson DL, Colorado GJ et al (2012) Spring migration stopover by Cerulean Warblers in northen Middle America. Ornitol Neotrop 23:289–305Google Scholar
  64. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:120–139CrossRefGoogle Scholar
  65. Woodworth BK, Mitchell GW, Norris DR et al (2015) Patterns and correlates of songbird movements at an ecological barrier during autumn migration assessed using landscape- and regional-scale automated radiotelemetry. Ibis 157:326–339.  https://doi.org/10.1111/ibi.12228 CrossRefGoogle Scholar
  66. Yong W, Finch DM, Moore FR, Kelly JF (1998) Stopover ecology and habitat use of migratory Wilson’s Warblers. Auk 115:829–842.  https://doi.org/10.2307/4089502 CrossRefGoogle Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2019

Authors and Affiliations

  1. 1.Asociación SELVA: Investigación para la Conservación en el NeotropicoBogotáColombia
  2. 2.Cornell Lab of OrnithologyIthacaUSA
  3. 3.American Bird ConservancyThe PlainsUSA
  4. 4.Laboratorio de Biología Evolutiva de VertebradosUniversidad de Los AndesBogotáColombia
  5. 5.Environment CanadaSaskatoonCanada

Personalised recommendations