The protoporphyrin content of Kentish Plover Charadrius alexandrinus eggshells is better predicted by the fractal dimension of spottiness than by colour

  • Jesús Gómez
  • Gustavo Liñán-Cembrano
  • Macarena Castro
  • Alejandro Pérez-Hurtado
  • Cristina Ramo
  • Juan A. Amat
Original Article


Quantifying the pigment content in avian eggshells is important for the validation of hypotheses on the functionality of eggshell coloration. The few studies that have analysed whether eggshell coloration and spottiness are related to pigment content have found contradictory results. In this study, we analysed whether the coloration and the degree of spottiness of Kentish Plover Charadrius alexandrinus eggshells are related to pigment concentrations (protoporphyrin and biliverdin). We also examined whether the concentrations of these pigments are related to the fractal dimension (FD) of spottiness. The FD of spottiness may be useful as a simple standardized method to quantify complex patterning. We found that protoporphyrin was more abundant than biliverdin in eggshells. Contrary to expectations, the content of protoporphyrin was not related to eggshell colour, probably due to a different allocation of pigments between the spots and the background of the eggshell, and/or to the different allocation of pigments among eggshell layers. However, we found a positive relationship between the FD of eggshell spottiness and the amount of protoporphyrin. It is likely that the FD of spottiness (indicative not only of spot size and the degree of spottiness, but also of how convoluted the outlines of spots are and how spots are distributed across an eggshell) may be related to the mechanical function of protoporphyrin (e.g. in strengthening eggshells, which may interfere with the fractal structure of potential fractures), and/or it may also improve egg camouflage. However, more studies in other avian species are needed to evaluate if the FD of spottiness is a good surrogate for protoporphyrin content in eggshells.


Biliverdin Coloration Digital photography Eggs Fractal analysis Pigmentation 


Die fraktale Dimension der Fleckung prognostiziert den Gehalt an Protoporphyrin in Eierschalen des Seeregenpfeifers Charadrius alexandrines besser als die Färbung.

Die Quantifizierung des Pigmentgehaltes in Eierschalen von Vögeln ist wichtig, um Hypothesen über die Funktionalität der Eierschalenfärbung zu überprüfen. Wenige Studien haben analysiert, ob die Färbung und Fleckung der Eierschalen mit dessen Pigmentgehalt zusammenhängt, wobei widersprüchliche Ergebnisse gefunden wurden. In dieser Studie haben wir untersucht, ob die Färbung und das Fleckungsausmaß der Eierschalen des Seeregenpfeifers Charadrius alexandrinus mit der Pigmentkonzentration (Protoporphyrin und Biliverdin) wie auch mit der fraktalen Dimension der Fleckung zusammenhängt. Die Verwendung der fraktalen Dimension der Fleckung sollte dabei als eine einfache standardisierte Methode zur Quantifizierung der komplexen Musterung dienen. Wir fanden heraus, dass in den Eierschalen Protoporphyrin reichlicher vorhanden war als Biliverdin. Entgegen den Erwartungen stand der Gehalt an Protoporphyrin nicht in Zusammenhang mit der Eierschalenfärbung, möglicherweise aufgrund der unterschiedlichen Zuordnung der Pigmente zwischen den Flecken und dem Eierschalenhintergrund und/oder der unterschiedlichen Verteilung der Pigmente innerhalb der Eierschalenschichten. Wir fanden einen positiven Zusammenhang zwischen der fraktalen Dimension der Eierschalenfleckung und der Menge an Protoporphyrin. Anzunehmen ist, dass die fraktale Dimension der Fleckung (nicht nur bezeichnend für die Fleckengröße und das Fleckungsausmaß, sondern auch dafür, wie gekrümmt die Fleckenumrisse und wie die Flecken über der Eierschale verteilt sind) mit den mechanischen Funktionen des Protoporphyrins (z.B. durch die Stärkung der Eierschalen zur Vermeidung einer möglichen fraktalen Struktur bei Brüchen) zusammenhängt und/oder die Eiertarnung verbessern könnte. Allerdings sind noch weitere Studien bei anderen Vogelarten nötig, um abzuschätzen, inwieweit die fraktale Dimension der Fleckung als guten Ersatzparameter für den Gehalt an Protoporphyrin in Eierschalen geeignet ist.



Thanks to Lorenzo Pérez-Rodríguez and Roger Jovani for their comments on previous versions of the manuscript. J. G. was supported by a FPU pre-doctoral fellowship (FPU-12/01616) from the Ministerio de Educación, Cultura y Deporte, Spain. Our project was funded by grant CGL2011-24230 from the Ministerio de Ciencia e Innovación, Spain, with EU-ERDF financial support, and was approved by the Comité Ético de Bienestar Animal from EBD-CSIC (reference CEBA-EBD_2011_01). During the preparation of the paper we were funded by grant CGL2017-83518-P from the Ministerio de Economía, Industria y Competitividad, Spain, with EU-ERDF financial support. The analyses of pigments were performed at the laboratory of chemical ecology of the Estación Biológica de Doñana (LEQ-EBD) by Isabel García and Juan Antonio Canales. Thanks also to Antonio Gómez Ferrer for providing facilities at the study site and to the Consejería de Medio Ambiente of the Junta de Andalucía, which authorised our study.


  1. Afonso S, Vanore G, Batle A (1999) Protoporphyrin IX and oxidative stress. Free Rad Res 31:161–170CrossRefGoogle Scholar
  2. Avilés JM (2008) Egg colour mimicry in the Common Cuckoo Cuculus canorus as revealed by modelling host retinal function. Proc R Soc Lond B 275:2345–2352CrossRefGoogle Scholar
  3. Billock VA, Cunningham DW, Tsou BH (2008) What visual discrimination of fractal textures can tell us about discrimination of camouflaged targets. Human factors issues in combat identification workshop, Gold Canyon, Arizona. Accessed 21 Sept 2016
  4. Board RG (1982) Properties of avian egg shells and their adaptive value. Biol Rev 57:1–28CrossRefGoogle Scholar
  5. Brulez K, Cassey P, Meeson A, Mikšík I, Webber SL, Gosler AG, Reynolds SJ (2014a) Eggshell spot scoring methods cannot be used as a reliable proxy to determine pigment quantity. J Avian Biol 45:94–102CrossRefGoogle Scholar
  6. Brulez K, Choudhary PK, Maurer G, Portugal SJ, Boulton RL, Webber SL, Cassey P (2014b) Visual scoring of eggshell patterns has poor repeatability. J Ornithol 155:701–706CrossRefGoogle Scholar
  7. Brulez K, Mikšík I, Cooney CR, Hauber ME, Lovell PG, Maurer G, Portugal SJ, Russell D, Reynolds SJ, Cassey P (2016) Eggshell pigment composition covaries with phylogeny but not with life history or with nesting ecology traits of British passerines. Ecol Evol 6:1637–1645CrossRefGoogle Scholar
  8. Bulla M, Šálek M, Gosler AG (2012) Eggshell spotting does not predict male incubation but marks thinner areas of a shorebird’s shells. Auk 129:26–35CrossRefGoogle Scholar
  9. Butler MW, Waite HS (2016) Eggshell biliverdin concentration does not sufficiently predict eggshell coloration. J Avian Biol 47:491–499CrossRefGoogle Scholar
  10. Carpinteri A, Chiaia B (1996) Crack-resistance behaviour as a consequence of self-similar fracture topologies. Int J Fract 76:327–340CrossRefGoogle Scholar
  11. Cassey P, Portugal SJ, Maurer G, Ewen JG, Boulton RL, Hauber ME, Blackburn TM (2010) Variability in avian eggshell colour: a comparative study of museum eggshells. PLoS One 5:e12054CrossRefGoogle Scholar
  12. Cassey P, Mikšík I, Portugal SJ, Maurer G, Ewen JG, Zarate E, Sewell MA, Karadas F, Grim T, Hauber ME (2012) Avian eggshell pigments are not consistently correlated with colour measurements or egg constituents in two Turdus thrushes. J Avian Biol 43:503–512CrossRefGoogle Scholar
  13. Cherepanov GP, Balankin AS, Ivanova VS (1995) Fractal fracture mechanics—a review. Eng Fract Mech 51:997–1033CrossRefGoogle Scholar
  14. Duval C, Cassey P, Lovell PG, Mikšík I, Reynolds SJ, Spencer KA (2013) Eggshell appearance does not signal maternal corticosterone exposure in Japanese Quail: an experimental study with brown-spotted eggs. PLoS One 8:e80485CrossRefGoogle Scholar
  15. Duval C, Cassey P, Lovell PG, Mikšík I, Reynolds SJ, Spencer KA (2015) Maternal influence on eggshell maculation: implications for cryptic camouflaged eggs. J Ornithol 157:303–310CrossRefGoogle Scholar
  16. Fernández E, Jelinek HF (2001) Use of fractal theory in neuroscience: methods, advantages, and potential problems. Methods 24:309–321CrossRefGoogle Scholar
  17. Gómez J, Liñán-Cembrano G (2017) SpotEgg: an image-processing tool for automatised analysis of colouration and spottiness. J Avian Biol 48:502–512CrossRefGoogle Scholar
  18. Gómez J, Pereira AI, Pérez-Hurtado A, Castro M, Ramo C, Amat JA (2016) A trade-off between overheating and camouflage on shorebird eggshell coloration. J Avian Biol 47:346–353CrossRefGoogle Scholar
  19. Gorchein A (2012) Quantitative HPLC of pigments of irregularly coloured eggshells: application to aliquots of powdered shell from quail. Biomed Chromatogr 26:1605–1607CrossRefGoogle Scholar
  20. Gorchein A, Lim CK, Cassey P (2009) Extraction and analysis of colourful eggshell pigments using HPLC and HPLC/electrospray ionization tandem mass spectrometry. Biomed Chromatogr 23:602–606CrossRefGoogle Scholar
  21. Gosler AG, Barnett PR, Reynolds SJ (2000) Inheritance and variation in eggshell patterning in the Great Tit Parus major. Proc R Soc Lond B 267:2469–2473CrossRefGoogle Scholar
  22. Gosler AG, Higham JP, Reynolds JS (2005) Why are birds’ eggs speckled? Ecol Lett 8:1105–1113CrossRefGoogle Scholar
  23. Gosler AG, Connor OR, Bonser RHC (2011) Protoporphyrin and eggshell strength: preliminary findings from a passerine bird. Avian Biol Res 4:214–223CrossRefGoogle Scholar
  24. Hargitai R, Boross N, Nyiri Z, Eke Z (2016) Biliverdin- and protoporphyrin-based eggshell pigmentation in relation to antioxidant supplementation, female characteristics and egg traits in the Canary (Serinus canaria). Behav Ecol Sociobiol 70:2093–2110CrossRefGoogle Scholar
  25. Hastings HM, Sugihara G (1993) Fractals: a user’s guide for the natural sciences. Oxford University Press, OxfordGoogle Scholar
  26. Jagannath A, Shore RF, Walker LA, Ferns PN, Gosler AG (2008) Eggshell pigmentation indicates pesticide contamination. J Appl Ecol 45:133–140CrossRefGoogle Scholar
  27. Jovani R, Tella JL (2007) Fractal bird nest distribution produces scale-free colony sizes. Proc R Soc Lond B 274:2465–2469CrossRefGoogle Scholar
  28. Kennedy GY, Vevers HG (1976) A survey of eggshell pigments. Comp Biochem Physiol Biochem Mol Biol 55:117–123CrossRefGoogle Scholar
  29. Kilner RM (2006) The evolution of egg colour and patterning in birds. Biol Rev 81:383–406CrossRefGoogle Scholar
  30. Losa GA (2002) Fractal morphometry of cell complexity. Riv Biol/Biol Forum 95:239–258Google Scholar
  31. Mandelbrot B (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156:636–638CrossRefGoogle Scholar
  32. Martínez-de la Puente J, Merino S, Moreno J, Tomas G, Morales J, Lobato E, Garcia-Fraile S, Martinez J (2007) Are eggshell spottiness and colour indicators of health and condition in Blue Tits Cyanistes caeruleus? J Avian Biol 38:377–384CrossRefGoogle Scholar
  33. Maurer G, Portugal SJ, Mikšík I, Cassey P (2011) Speckles of cryptic Black-headed Gull eggs show no mechanical or conductance structural function. J Zool 285:194–204CrossRefGoogle Scholar
  34. McGraw KJ (2006) Mechanisms of uncommon colors: pterins, porphyrins, and psittacofulvins. In: McGraw KJ, Hill GE (eds) Bird coloration. Volume I. Mechanisms and measurements. Harvard University Press, Cambridge, pp 354–398Google Scholar
  35. Mikšik I, Holan V, Deyl Z (1996) Avian eggshell pigments and their variability. Comp Biochem Physiol Biochem Mol Biol 113:607–612CrossRefGoogle Scholar
  36. Moreno J, Lobato E, Morales J, Merino S, Tomás G, Martínez de la Puente J, Sanz JJ, Mateo R, Soler JJ (2006) Experimental evidence that egg colour indicates female condition at laying in a songbird. Behav Ecol 17:651–655CrossRefGoogle Scholar
  37. Pérez-Rodríguez L, Jovani R, Mougeot F (2013) Fractal geometry of a complex plumage trait reveals bird’s quality. Proc R Soc Lond B 280:20122783CrossRefGoogle Scholar
  38. Pérez-Rodríguez L, Jovani R, Stevens M (2017) Shape matters: animal colour patterns as signals of individual quality. Proc R Soc B 284:20162446CrossRefGoogle Scholar
  39. Ratcliffe DA (1970) Changes attributable to pesticides in egg breakage frequency and eggshell thickness in some British birds. J Appl Ecol 7:67–115CrossRefGoogle Scholar
  40. Reynolds SJ, Martin GR, Cassey P (2009) Is sexual selection blurring the functional significance of eggshell coloration hypotheses? Anim Behav 78:209–215CrossRefGoogle Scholar
  41. Riehl C (2011) Paternal investment and the ʻsexually selected hypothesisʼ for the evolution of eggshell coloration: revisiting the assumptions. Auk 128:175–179CrossRefGoogle Scholar
  42. Ryter SW, Tyrrell RM (2000) The heme synthesis and degradation pathways: role in oxidant sensitivity—heme oxygenase has both pro- and antioxidant properties. Free Radic Biol Med 28:289–309CrossRefGoogle Scholar
  43. Samiullah S, Roberts JR (2013) The location of protoporphyrin in the eggshell of brown-shelled eggs. Poult Sci 92:2783–2788CrossRefGoogle Scholar
  44. Schroeder M (1991) Fractals, chaos, power laws: minutes from an infinite paradise. Freeman, New YorkGoogle Scholar
  45. Siefferman L, Navara KJ, Hill GE (2006) Egg coloration is correlated with female condition in Eastern Bluebirds (Sialia sialis). Behav Ecol Sociobiol 59:651–656CrossRefGoogle Scholar
  46. Siegel S, Castellan NJ Jr (1988) Nonparametric statistics for the behavioral sciences. McGraw Hill, New YorkGoogle Scholar
  47. Sparks NH (2011) Eggshell pigments—from formation to deposition. Avian Biol Res 4:162–167CrossRefGoogle Scholar
  48. Stevens M (2011) Avian vision and egg coloration: concepts and measurements. Avian Biol Res 4:168–184CrossRefGoogle Scholar
  49. Stoddard MC, Stevens M (2010) Pattern mimicry of host eggs by the Common Cuckoo, as seen through a bird’s eye. Proc R Soc B 277:1387–1393CrossRefGoogle Scholar
  50. Stoddard MC, Kilner RM, Town C (2014) Pattern recognition algorithm reveals how birds evolve individual egg pattern signatures. Nat Com 5:4117CrossRefGoogle Scholar
  51. TIBCO Software (2017) STATISTICA, version 13.3.0. Accessed 11 July 2018
  52. Troscianko J, Wilson-Aggarwal J, Stevens M, Spottiswoode CN (2016) Camouflage predicts survival in ground-nesting birds. Sci Rep 6:19966CrossRefGoogle Scholar
  53. Turcotte DL (1986) Fractals and fragmentation. J Geophys Res 91B2:1921–1926Google Scholar
  54. Underwood TJ, Sealy SG (2002) Adaptive significance of egg coloration. In: Deeming DC (ed) Avian incubation. Oxford University Press, Oxford, pp 280–298Google Scholar
  55. Wang XT, Zhao CJ, Li JY, Xu GY, Lian LS, Wu CX, Deng XM (2009) Comparison of the total amount of eggshell pigments in Dongxiang brown-shelled eggs and Dongxiang blue-shelled eggs. Poult Sci 88:1735–1739CrossRefGoogle Scholar
  56. Wegmann M, Vallat-Michel A, Richner H (2015) An evaluation of different methods for assessing eggshell pigmentation and pigment concentration using Great Tit eggs. J Avian Biol 46:597–607CrossRefGoogle Scholar
  57. Weibel ER (1991) Fractal geometry: a design principle for living organisms. Am J Physiol Lung Cell Mol Physiol 261:L361–L369CrossRefGoogle Scholar
  58. Zhang K, Wang S (2012) Research on the pore structure of the eggshell based on fractal theory. J Food Agric Environ 10:517–520Google Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2018

Authors and Affiliations

  • Jesús Gómez
    • 1
  • Gustavo Liñán-Cembrano
    • 2
  • Macarena Castro
    • 3
  • Alejandro Pérez-Hurtado
    • 3
  • Cristina Ramo
    • 1
  • Juan A. Amat
    • 1
  1. 1.Departamento de Ecología de HumedalesEstación Biológica de Doñana (EBD-CSIC)SevilleSpain
  2. 2.Instituto de Microelectrónica de Sevilla (IMSE-CNM)Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de SevillaSevilleSpain
  3. 3.Departamento de Biología, Facultad de Ciencias del Mar y AmbientalesUniversidad de CádizPuerto RealSpain

Personalised recommendations