Singing of Claudia’s Leaf-warbler (Phylloscopus claudiae) in aggressive contexts: role of song rate, song type diversity and song type transitional pattern

  • Alexey OpaevEmail author
  • Yulia Kolesnikova
  • Meishi Liu
  • Zujie Kang
Original Article


In many songbirds, males vary certain aspects of their singing behavior when engaged in territorial interactions. Song rate, song type switching rate, song matching, song overlapping, and the usage of specific song types were proposed to be aggressive signals. It is well known that transitions between different song types in a song sequence are non-random in many species, but the signaling significance of non-random vocal streams is poorly understood. We asked whether singing plays a role in male–male interactions in Claudia’s Leaf-warbler. Along with more traditional metrics (i.e., song length, song rate, song type switching rate and song type diversity), we used (1) song sequence linearity (SLIN) and consistency (SCONS) indexes, and (2) applied an information theory approach by means of a first-order relative entropy (RE1) calculation to analyze the role of song type transitional patterns in male–male interactions. The study was conducted in April–June 2016 in Hupingshan National Nature Reserve, Hunan province, China. We simulated territorial intrusion by broadcasting Claudia’s Leaf-warbler songs in territories. Experiments involved 14 different males. A comparison of spontaneous singing with that elicited by playback showed that song rate and song type diversity increased, and that entropy decreased. By contrast, SLIN and SCONS, though significantly correlated with RE1, did not differ between spontaneous singing and singing in response to playback. The decrease of entropy means that the transitions between different song types in a song sequence were determined more by specific factors and predictable and thus more non-random. However, these results were weak, as the decrease of RE1 did not coincide with the expected increase of SLIN, SCONS and S. Our results are thus partly consistent with the idea that non-random vocal structures, along with other song parameters, could play a role in male–male competition.


Birdsong Communication Entropy Playback experiments Territory 


Die Rolle von Wiederholungshäufigkeit, Gesangsvielfalt und spezifischer Übergangsmuster im Gesang von Claudias Laubsängern ( Phylloscopus claudiae ) bei Revierkämpfen

Bei vielen Vogelarten ändern die Männchen bei Revierkämpfen bestimmte Eigenheiten ihres Sing-Verhaltens. Die Wiederholungsrate des Gesangs, das Wechseln zwischen unterschiedlichen Gesangselementen, das Zurücksingen an einen Artgenossen, das Überlappen von Gesängen und der Einsatz ganz spezifischer Gesangselemente wurden schon als Zeichen für Agressivität gewertet. Für viele Vogelarten weiß man, dass die Übergänge zwischen unterschiedlichen Gesangselementen innerhalb einer längeren Folge nicht zufällig gewählt sind, aber die Signalbedeutung solcher nicht-zufälliger Tonfolgen ist noch kaum bekannt. Unsere Fragestellung war, ob bei Claudias Laubsängern der Gesang bei den Interaktionen zwischen Männchen eine Rolle spielt. Zusätzlich zu den üblichen Parametern wie Gesangsdauer, Wiederholungshäufigkeit, Umschalten zwischen einzelnen Gesangselementen und Vielfalt der eingesetzten Gesänge, nutzten wir auch Berechnungen des mittleren Informationsgehalts als informationstheoretischen Ansatz für die Analyse der Rolle, die diese Übergangsmuster innerhalb der Gesänge bei den Auseinandersetzungen zwischen den Männchen spielte. Die Studie wurde von April bis Juni 2016 im Hupingshan Naturschutzgebiet in der Provinz Hunan, China, durchgeführt. Wir simulierten ein Eindringen in die Reviere durch das Abspielen von Gesängen dieser Laubsänger dort, und 14 unterschiedliche Männchen wurden in die Untersuchungen einbezogen. Ein Vergleich von spontanen Gesängen mit solchen, die durch das Playback-Verfahren ausgelöst wurden, zeigte, dass die Wiederholungsrate der Gesänge sowie die Vielfalt der einzelnen unterschiedlichen Gesangselemente anstieg und der Informationsgehalt abnahm. Diese Verringerung des Informationsgehalts heißt, dass sich die Übergänge zwischen unterschiedlichen Gesangselementen innerhalb eines Lieds als stärker festgelegt und damit eher vorhersagbar und weniger zufällig erwiesen. Diese Untersuchung bietet somit einen empirischen Beweis dafür an, dass im Konkurrenzkampf zwischen den Männchen nicht-zufällige Gesangsstrukturen zusammen mit anderen Gesangs-Parametern eine Rolle spielen könnten.



The authors thank Shurong Tian for his support during the field study. A. O. and Y. K. were supported by the Russian Foundation for Basic Research (project no. 17-04-00903-a).

Supplementary material

10336_2018_1614_MOESM1_ESM.tif (3.3 mb)
Fig. 1S Examples of songs of male 12 Phylloscopus claudiae belonging to song type no. 1 (1a1d) and song type no. 2 (2a2d) (TIFF 3330 kb)


  1. Baker T, Wilson D, Mennill D (2012) Vocal signals predict attack during aggressive interactions in Black-capped Chickadees. Anim Behav 84:965–974CrossRefGoogle Scholar
  2. Bhattacharya H, Cirillo J, Subba BR, Todt D (2007) Song performance rules in the Oriental Magpie Robin (Copsychus salauris). Nature 5:1–13Google Scholar
  3. Briefer E, Osiejuk T, Rybak F, Aubin T (2010) Are bird song complexity and song sharing shaped by habitat structure? An information theory and statistical approach. J Theor Biol 262:151–164CrossRefPubMedGoogle Scholar
  4. Byers BE (2017) Chestnut-sided Warblers use rare song types in extreme aggressive contexts. Anim Behav 125:33–39CrossRefGoogle Scholar
  5. Catchpole CK, Slater PJB (2008) Bird song: biological themes and variations, 2nd edn. Cambridge University Press, Cambridge, p 335CrossRefGoogle Scholar
  6. Dobson CW, Lemon RE (1978) Markov sequences in songs of American thrushes. Behaviour 68:86–104Google Scholar
  7. Gil D, Slater PJB (2000) Song organization and singing patterns of the Willow Warbler, Phylloscopus trochilus. Behaviour 137:759–782CrossRefGoogle Scholar
  8. Goretskaia MI (2013) Song structure variability in passerine birds: random variation or direct informative changes. Biol Bull 40:748–759CrossRefGoogle Scholar
  9. Hammer Ø, Harper DAT, Ryan PD (2001) PAST—paleontological statistics.
  10. Hill SD, Brunton DH, Anderson M, Ji W (2017) Fighting talk: complex song elicits more aggressive responses in a vocally complex songbird.
  11. Hultsch H, Todt D (1982) Temporal performance roles during vocal interactions in Nightingales (Luscinia megarhynchos). Behav Ecol Sociobiol 11:253–260CrossRefGoogle Scholar
  12. Ivanitskii VV, Ivlieva A, Gashkov S, Marova I (2017b) The song structure of the Siberian Blue Robin Luscinia [Larvivora] cyane and a comparison with related species. Ornithol Sci 16:71–77CrossRefGoogle Scholar
  13. Ivanitskii VV, Marova IM, Antipov VA (2017a) Sequential organization in the song of (Luscinia luscinia): clustering and sequential order of the song types. Bioacoustics 26:199–215CrossRefGoogle Scholar
  14. Ivanitskii VV, Marova IM, Malykh IM (2012) Between order and chaos: contrasting syntax in the advertising song of Dusky (Phylloscopus fuscatus) and Radde’s (Ph. schwarzi) Warblers. J Ornithol 153:337–346CrossRefGoogle Scholar
  15. Krebs JR (1976) Habituation and song repertoire in the Great Tit. Behav Ecol Sociobiol 1:215–227CrossRefGoogle Scholar
  16. Krebs JR (1977) The significance of song repertoires: the Beau Geste hypothesis. Anim Behav 25:475–478CrossRefGoogle Scholar
  17. Kroodsma DE (1989) Suggested experimental designs for song playbacks. Anim Behav 37:600–609CrossRefGoogle Scholar
  18. Kroodsma DE, Verner J (1978) Complex singing behaviors among Cistothorus wrens. Auk 95:703–716Google Scholar
  19. Leitner S, Marshall RC, Leisler B, Catchpole CK (2006) Male song quality, egg size and offspring sex in captive canaries (Serinus canaria). Ethology 112:554–563CrossRefGoogle Scholar
  20. Leitão A, ten Cate C, Riebel K (2006) Within-song complexity in a songbird is meaningful to both male and female receivers. Anim Behav 71:1289–1296CrossRefGoogle Scholar
  21. Lemon RE, Dobson CW, Clifton PG (1993) Songs of American Redstarts (Setophaga ruticilla): sequencing rules and their relationships to repertoire size. Ethology 93:198–210CrossRefGoogle Scholar
  22. Martens J, Tietze DT, Päckert M (2011) Phylogeny, biodiversity, and species limits of passerine birds in the Sino-Himalayan region—a critical review. Ornithol Monogr 70:64–94CrossRefGoogle Scholar
  23. McGregor PK (2000) Playback experiments: design and analysis. Acta Ethol 3:3–8CrossRefGoogle Scholar
  24. McGregor PK, Catchpole CK, Dabelsteen T, Falls JB, Fusani L, Gerhardt HC, Gilbert F, Horn AG, Klump GM, Kroodsma DE, Lambrechts MM, McComb KE, Nelson DA, Pepperberg IM, Ratcliffe L, Searcy WA, Weary DM (1992) Design and interpretation of playback: the Thornbridge Hall NATO ARW consensus. In: McGregor PK (ed) Playback and studies of animal communication. Plenum, New York, pp 1–9CrossRefGoogle Scholar
  25. Okanoya K (2013) Finite–state song syntax in Bengalese finches: sensorimotor evidence, developmental processes, and formal procedures for syntax extraction. In: Bolhuis JJ, Everaert M (eds) Birdsong, speech, and language. Exploring the evolution of mind and brain. MIT, London, pp 229–242Google Scholar
  26. Opaev A (2016) Relationships between repertoire size and organization of song bouts in the Grey-crowned Warbler (Seicercus tephrocephalus). J Ornithol 157:949–960CrossRefGoogle Scholar
  27. Palmero AM, Espelosín J, Laiolo P, Illera JC (2014) Information theory reveals that individual birds do not alter song complexity when varying song length. Anim Behav 87:153–163CrossRefGoogle Scholar
  28. Pekár S, Brabec M (2016) Marginal models via GLS: a convenient yet neglected tool for the analysis of correlated data in the behavioural sciences. Ethology 122:621–631CrossRefGoogle Scholar
  29. Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S, Van Walliger B (2017) Linear and nonlinear mixed effects models.
  30. Päckert M, Blume C, Sun Y-H, Wei L, Martens J (2009) Acoustic differentiation reflects mitochondrial lineages in Blyth’s Leaf Warbler and White-tailed Leaf Warbler complexes (Aves: Phylloscopus reguloides, Phylloscopus davisoni). Biol J Linn Soc 96:584–600CrossRefGoogle Scholar
  31. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  32. Ruxton GD, Schaefer HM (2011) Resolving current disagreements and ambiguities in the terminology of animal communication. J Evol Biol 24:2574–2585CrossRefPubMedGoogle Scholar
  33. Sasahara K, Cody ML, Cohen D, Taylor C (2012) Structural design principles of complex bird songs: a network-based approach. PLoS One 7:e44446CrossRefGoogle Scholar
  34. Schank JC, Koehnle TJ (2009) Pseudoreplication is a pseudoproblem. J Comp Psychol 123:421–433CrossRefPubMedGoogle Scholar
  35. Scharff C, Nottebohm F (1991) A comparative study of the behavioral deficits following lesions of various parts of the Zebra Finch song system: implication for vocal learning. J Neurosci 11:2896–2913CrossRefPubMedGoogle Scholar
  36. Scordato ESC (2017) Geographic variation in male territory defense strategy in an avian ring species. Anim Behav 126:153–162CrossRefGoogle Scholar
  37. Searcy WA, Beecher MD (2009) Song as an aggressive signal in songbirds. Anim Behav 78:1281–1292CrossRefGoogle Scholar
  38. Searcy WA, Nowicki S, Hogan C (2000) Song type variants and aggressive context. Behav Ecol Sociobiol 48:358–363CrossRefGoogle Scholar
  39. Searcy WA, Yasukawa K (1990) Use of the song repertoire in intersexual and intrasexual context by male Red-winged Blackbirds. Behav Ecol Sociobiol 27:123–128CrossRefGoogle Scholar
  40. Spedicato GA, Kang TS, Yalamanchi SB, Thoralf M, Yadav D, Castillo NC, Jain V (2017) Easy handling discrete time Markov chains.
  41. Szymkowiak J, Kuczyński L (2017) Song rate as a signal of male aggressiveness during territorial contests in the wood warbler. J Avian Biol 48:275–283CrossRefGoogle Scholar
  42. Todt D, Hultsch H (1998) How songbirds deal with large amounts of serial information: retrieval rules suggest a hierarchical song memory. Biol Cybern 79:487–500CrossRefGoogle Scholar
  43. Todt D, Naguib M (2000) Vocal interactions in birds: the use of song as a model in communication. Adv Study Behav 29:247–296CrossRefGoogle Scholar
  44. Vehrencamp SL, Hall ML, Bohman ER, Depeine CD, Dalziel AH (2007) Song matching, overlapping, and switching in the Banded Wren: the sender’s perspective. Behav Ecol 18:849–859CrossRefPubMedPubMedCentralGoogle Scholar
  45. Weiss M, Hultsch H, Adam I, Scharff C, Kipper S (2014) The use of network analysis to study complex animal communication systems: a study on nightingale song. Proc R Soc B 281:20140460CrossRefPubMedGoogle Scholar
  46. Woolley SMN, Rubel EW (1997) Bengalese Finches Lonchura striata domestica depend upon auditory feedback for the maintenance of adult song. J Neurosci 17:6380–6390CrossRefPubMedGoogle Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2018

Authors and Affiliations

  • Alexey Opaev
    • 1
    Email author
  • Yulia Kolesnikova
    • 1
  • Meishi Liu
    • 2
  • Zujie Kang
    • 2
  1. 1.Severtsov Institute of Ecology and Evolution of the Russian Academy of SciencesMoscowRussian Federation
  2. 2.Hupingshan National Nature ReserveHupingshanChina

Personalised recommendations