Journal of Ornithology

, Volume 160, Issue 1, pp 105–115 | Cite as

Stream type influences food abundance and reproductive performance of a stream specialist: the Brown Dipper (Cinclus pallasii)

  • Shiao-Yu Hong
  • Tsai-Wei Wang
  • Yuan-Hsun Sun
  • Ming-Chih Chiu
  • Mei-Hwa Kuo
  • Chao-Chieh ChenEmail author
Original Article


Avian reproduction and population growth are highly dependent on food availability. Consequently, studies on these variables require accurate estimates of food abundance that may vary in space and time. Dippers (Cinclus spp.) are obligate stream predators in freshwater ecosystems. Although it is well known that dippers are affected by aquatic macroinvertebrate density and proportion of riffle habitat, rarely are these two factors combined to estimate their food availability. We developed a new method to estimate food availability and tested the relationship of food availability with reproduction performance of the Brown Dipper (Cinclus pallasii) in Taiwan from 2013 to 2015. We defined three stream types (stony riffles, sandy runs, and pools) with water depth and benthic substrate. Macroinvertebrate biomass was significantly greater in stony riffles than in sandy runs. We then measured the area of the three stream types in a 400-m stream segment centering on each Brown Dipper’s nest. The area of stony riffles was multiplied by average macroinvertebrate density of each stream to represent food availability in stony riffles of each territory. Response variables on reproductive performance (e.g., laying date, clutch size, fledgling number, and territory length) of each nest were recorded. Linear mixed-effects models showed that food availability estimated using the area of stony riffles was significant correlated with all aspects of reproductive performance of Brown Dippers and was a better predictor than food availability estimated in the total water area. This study also demonstrated that summer floods and winter flows (high or low water level) could influence food availability in the dipper’s breeding season by different mechanisms.


Food availability Reproductive success Aquatic invertebrates Stream habitat Flooding Taiwan 


Der Flusstyp beeinflusst Nahrungsangebot und Fortpflanzungserfolg eines Fluss-Spezialisten: der Pallaswasseramsel ( Cinclus pallasii )

Fortpflanzung und Wachstum einer Population hängen bei Vögeln sehr stark vom Nahrungsangebot ab. Deshalb müssen sie in der Lage sein, das nach Ort und Zeit oft unterschiedliche Nahrungsangebot möglichst genau einzuschätzen. Wasseramseln (Cinclus spp.) fangen ihre Nahrung ausschließlich in Bächen und Flüssen. Obwohl ein Einfluss der Wirbellosendichte sowie der Riffelung der Flussböden durchaus gut bekannt ist, wurden diese beiden Faktoren für eine Einschätzung ihres Nahrungsangebots bisher nur selten zusammen betrachtet. Wir entwickelten eine neue Methode zur Einschätzung des Nahrungsangebots und testeten dessen Zusammenhang mit dem Fortpflanzungserfolg bei der Pallaswasseramsel (Cinclus pallasii) in Taiwan von 2013 bis 2015. Hierfür definierten wir drei unterschiedliche Flusstypen (steiniger geriffelter Grund, sandiger Grund, Pools) mit Wassertiefe und benthischem Substrat. In geriffeltem Grund war die Biomasse an größeren Wirbellosen wesentlich größer als in sandigem Grund. Danach bestimmten wir die Fläche jeden Typs innerhalb eines 400 m Abschnittes zentriert um jedes Wasseramselnest. Zur Abschätzung des Nahrungsangebotes im steinigen Grund multiplizierten wir dessen Flächenanteil mit der mittleren Wirbellosen-Dichte in steinigem Grund. Weiterhin erfassten wir zu jedem Nest Legedatum, Gelegegröße, Anzahl Flügglinge und Territoriumsgröße. Lineare gemischte Modelle zeigten, dass das Nahrungsangebot in steinigem Grund signifikant mit allen Fortpflanzungsparametern korrelierte und ein besserer Prädiktor für Fortpflanzungserfolg war als das aus der gesamten Gewässerfläche geschätzte Nahrungsangebot. Diese Untersuchung zeigt auch, dass Überflutungen im Sommer oder Niedrigwasser im Winter (hohe oder niedrige Wasserstände) das Nahrungsangebot während der Brutzeit der Wasseramseln über unterschiedliche Mechanismen beeinflussen können.



Our research was supported by Grants from the Shei-Pa National Park and partly by the Ministry of Science and Technology, Taiwan. We thank Hans-Uwe Dahms, Steve Ormerod and Christy Morrissey for critically reading and editing the manuscript along with one anonymous reviewer. This study complied with the current Wildlife Conservation Act and other related laws of Taiwan.

Supplementary material

10336_2018_1604_MOESM1_ESM.docx (518 kb)
Supplementary material 1 (DOCX 518 kb)


  1. Baptista D, Buss D, Dorvillé L, Nessimian J (2001) Diversity and habitat preference of aquatic insects along the longitudinal gradient of the Macaé river basin, Rio de Janeiro, Brazil. Rev Bras Biol 61:249–258CrossRefGoogle Scholar
  2. Bates DM (2010) lme4: mixed-effects modeling with R. Springer, Berlin HeidelberGoogle Scholar
  3. Benke AC, Huryn AD, Smock LA, Wallace JB (1999) Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. J N Am Benthol Soc 18:308–343CrossRefGoogle Scholar
  4. Both C (2010) Food availability, mistiming, and climatic change. In: Moller AP, Fiedler W, Berthold P (eds) Effects of climate change on birds. Oxford University Press, Oxford, pp 129–147Google Scholar
  5. Chen C-C, Wang Y (2010) Relationships between stream habitat and breeding territory length of the Brown Dipper (Cinclus pallasii) in Taiwan. J Ornithol 151:87–93CrossRefGoogle Scholar
  6. Chiu MC, Kuo MH (2012) Application of r/K selection to macroinvertebrate responses to extreme floods. Ecol Entomol 37:145–154CrossRefGoogle Scholar
  7. Chiu MC, Kuo MH, Hong SY, Sun YH (2013) Impact of extreme flooding on the annual survival of a riparian predator, the Brown Dipper Cinclus pallasii. Ibis 155:377–383CrossRefGoogle Scholar
  8. Chiu M-C, Kuo M-H, Sun Y-H, Hong S-Y, Kuo H-C (2008) Effects of flooding on avian top-predators and their invertebrate prey in a monsoonal Taiwan stream. Freshw Biol 53:1335–1344CrossRefGoogle Scholar
  9. Chiu M-C, Kuo M-H, Tzeng C-S, Yang C-H, Chen C-C, Sun Y-H (2009) Prey selection by breeding Brown Dippers Cinclus pallasii in a Taiwanese mountain stream. Zool Stud 48:761–768Google Scholar
  10. Cobb D, Galloway T, Flannagan J (1992) Effects of discharge and substrate stability on density and species composition of stream insects. Can J Fish Aquat Sci 49:1788–1795CrossRefGoogle Scholar
  11. Da Prato S (1981) The effect of spates on the feeding behaviour of dippers. Bird Stud 28:60–62CrossRefGoogle Scholar
  12. D’Amico F, Hémery G (2007) Time-activity budgets and energetics of dipper Cinclus cinclus are dictated by temporal variability of river flow. Comp Biochem Physiol A Mol Integr Physiol 148:811–820. CrossRefGoogle Scholar
  13. D’Amico F, Boitier E, Marzolin G (2003) Timing of onset of breeding in three different dipper Cinclus cinclus populations in France: timing of breeding varies widely. Bird Stud 50:189–192CrossRefGoogle Scholar
  14. Eguchi K (1990) The choice of foraging methods of the Brown Dipper, Cinclus pallasii (Aves: Cinclidae). J Ethol 8:121–127CrossRefGoogle Scholar
  15. Feck J, Hall RO Jr (2004) Response of American dippers (Cinclus mexicanus) to variation in stream water quality. Freshwat Biol 49:1123–1137CrossRefGoogle Scholar
  16. Georgian T, Thorp JH (1992) Effects of microhabitat selection on feeding rates of net-spinning caddisfly larvae. Ecology 73:229–240CrossRefGoogle Scholar
  17. Hegelbach J (2001) Water temperature and phytophenology indicate the earlier onset of oviposition in Eurasian Dipper (Cinclus cinclus) from the Swiss Lowlands. J Ornithol 142:284–294Google Scholar
  18. Heinsohn R, Langmore NE, Cockburn A, Kokko H (2011) Adaptive secondary sex ratio adjustments via sex-specific infanticide in a bird. Curr Biol 21:1744–1747CrossRefGoogle Scholar
  19. Hong S-Y, Chen H-L, Kao C-C, Zeng J-W, Sun Y-H (2011) Breeding biology of Brown Dipper (Cinclus pallasii) in Chichiawan stream. J Natl Park 21:30–36Google Scholar
  20. Hong SY, Sharp SP, Chiu MC, Kuo MH, Sun YH (2018) Flood avoidance behaviour in Brown Dippers Cinclus pallasii. Ibis 160:179–184CrossRefGoogle Scholar
  21. Hong S-Y, Walther BA, Chiu M-C, Kuo M-H, Sun Y-H (2016) Length of the recovery period after extreme flood is more important than flood magnitude in influencing reproductive output of Brown Dippers (Cinclus pallasii) in Taiwan. Condor 118:640–654CrossRefGoogle Scholar
  22. Intergovernmental Panel on Climate Change (IPCC) (2014) In: Core Writing Team, Pachauri RK, Meyer LA (eds) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, GenevaCrossRefGoogle Scholar
  23. Karell P, Ahola K, Karstinen T, Zolei A, Brommer JE (2009) Population dynamics in a cyclic environment: consequences of cyclic food abundance on tawny owl reproduction and survival. J Anim Ecol 78:1050–1062CrossRefGoogle Scholar
  24. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 82(13):1–26CrossRefGoogle Scholar
  25. Lehikoinen A, Ranta E, Pietiäinen H et al (2011) The impact of climate and cyclic food abundance on the timing of breeding and brood size in four boreal owl species. Oecologia 165:349–355CrossRefGoogle Scholar
  26. Lehikoinen A, Lindén A, Byholm P et al (2013) Impact of climate change and prey abundance on nesting success of a top predator, the goshawk. Oecologia 171:283–293CrossRefGoogle Scholar
  27. Logie JW, Bryant DM, Howell DL, Vickery JA (1996) Biological significance of UK critical load exceedance estimates for flowing waters: assessments of dipper Cinclus cinclus populations in Scotland. J Appl Ecol 33:1065–1076CrossRefGoogle Scholar
  28. Marshall MR, Cooper RJ (2004) Territory size of a migratory songbird in response to caterpillar density and foliage structure. Ecology 85:432–445CrossRefGoogle Scholar
  29. Martin TE (1987) Food as a limit on breeding birds: a life-history perspective. Annu Rev Ecol Syst 18:453–487CrossRefGoogle Scholar
  30. Mock DW, Drummond H, Stinson CH (1990) Avian siblicide. Am Sci 78:438–449Google Scholar
  31. Moreno J (2012) Parental infanticide in birds through early eviction from the nest: rare or under‐reported? J Avian Biol 43:43–49CrossRefGoogle Scholar
  32. Morrissey CA, Stanton DW, Tyler CR, Pereira MG, Newton J, Durance I, Ormerod SJ (2014) Developmental impairment in eurasian dipper nestlings exposed to urban stream pollutants. Environ Toxicol Chem 33:1315–1323CrossRefGoogle Scholar
  33. Nooker JK, Dunn PO, Whittingham LA, Murphy M (2005) Effects of food abundance, weather, and female condition on reproduction in tree swallows (Tachycineta bicolor). Auk 122:1225–1238CrossRefGoogle Scholar
  34. Ormerod SJ (1985) The diet of breeding dippers Cinclus cinclus and their nestlings in the catchment of the River Wye, mid-Wales: a preliminary study by faecal analysis. Ibis 127:316–331CrossRefGoogle Scholar
  35. Ormerod SJ, Allenson N, Hudson D, Tyler SJ (1986) The distribution of breeding dippers (Cinclus cinclus (L.); Aves) in relation to stream acidity in upland Wales. Freshwat Biol 16:501–507CrossRefGoogle Scholar
  36. Ormerod SJ, Boilstone MA, Tyler SJ (1985) Factors influencing the abundance of breeding dippers Cinclus cinclus in the catchment of the River Wye, mid-Wales. Ibis 127:332–340CrossRefGoogle Scholar
  37. Ormerod SJ, O’Halloran J, Gribbin SD, Tyler SJ (1991) The ecology of dippers Cinclus cinclus in relation to stream acidity in upland Wales: breeding performance, calcium physiology and nestling growth. J Appl Ecol 28:419–433CrossRefGoogle Scholar
  38. Ormerod SJ, Svein E, Leif EG (1987) The diet of breeding dippers Cinclus cinclus cinclus and their nestlings in southwestern Norway. Holarct Ecol 10:201–205Google Scholar
  39. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  40. Reed TE, Jenouvrier S, Visser ME (2013) Phenological mismatch strongly affects individual fitness but not population demography in a woodland passerine. J Anim Ecol 82:131–144CrossRefGoogle Scholar
  41. Schaper SV, Dawson A, Sharp PJ, Caro SP, Visser ME (2012) Individual variation in avian reproductive physiology does not reliably predict variation in laying date. Gen Comp Endocrinol 179:53–62CrossRefGoogle Scholar
  42. Severinghaus LL, Ding TS, Fang WH, Lin WH, Tsai MC, Yen CW (2012) The avifauna of Taiwan, 2nd edn. Forestry Bureau, Council of Agriculture, TaipeiGoogle Scholar
  43. Shaw G (1978) The breeding biology of the dipper. Bird Study 25:149–160CrossRefGoogle Scholar
  44. Silverthorn VM, Bishop CA, Jardine T, Elliott JE, Morrissey CA (2018) Impact of flow diversion by run-of-river dams on American dipper diet and mercury exposure. Environ Toxicol Chem 37:411–426CrossRefGoogle Scholar
  45. Sofaer HR, Sillett TS, Peluc SI, Morrison SA, Ghalambor CK (2013) Differential effects of food availability and nest predation risk on avian reproductive strategies. Behav Ecol 24:698–707CrossRefGoogle Scholar
  46. Sternalski A, Blanc JF, Augiron S, Rocheteau V, Bretagnolle V (2013) Comparative breeding performance of marsh harriers Circus aeruginosus along a gradient of land-use intensification and implications for population management. Ibis 155:55–67CrossRefGoogle Scholar
  47. Sullivan SMP, Vierling KT (2012) Exploring the influences of multiscale environmental factors on the American dipper Cinclus mexicanus. Ecography 34:1–13Google Scholar
  48. Tremblay I, Thomas D, Blondel J, Perret P, Lambrechts MM (2004) The effect of habitat quality on foraging patterns, provisioning rate and nestling growth in Corsican Blue Tits Parus caeruleus. Ibis 147:17–24CrossRefGoogle Scholar
  49. Tyler SJ, Ormerod SJ (1992) A review of the likely causal pathways relating the reduced density of breeding dippers Cinclus cinclus to the acidification of upland streams. Environ Pollut 78:49–55CrossRefGoogle Scholar
  50. Ulfstrand S (1967) Microdistribution of benthic species (Ephemeroptera, Plecoptera, Trichoptera, Diptera: Simuliidae) in Lapland streams. Oikos 18:293–310CrossRefGoogle Scholar
  51. Urbanič G, Toman MJ, Krušnik C (2005) Microhabitat type selection of caddisfly larvae (Insecta: Trichoptera) in a shallow lowland stream. Hydrobiologia 541:1–12CrossRefGoogle Scholar
  52. van de Crommenacker J, Komdeur J, Burke T, Richardson DS (2011) Spatio-temporal variation in territory quality and oxidative status: a natural experiment in the Seychelles warbler (Acrocephalus sechellensis). J Anim Ecol 80:668–680CrossRefGoogle Scholar
  53. Vickery J (1991) Breeding density of dippers Cinclus cinclus, grey wagtails Motacilla cinerea and common sandpipers Actitis hypoleucos in relation to the acidity of streams in south-west Scotland. Ibis 133:178–185CrossRefGoogle Scholar
  54. Vickery J (1992) The reproductive success of the dipper Cinclus cinclus in relation to the acidity of streams in south-west Scotland. Freshwat Biol 28:195–205CrossRefGoogle Scholar
  55. Wiggins GB (1996) Larvae of the North American caddisfly genera (Trichoptera). University of Toronto, TorontoCrossRefGoogle Scholar
  56. Yu S-F, Lin H-J (2009) Effects of agriculture on the abundance and community structure of epilithic algae in mountain streams of subtropical Taiwan. Botanical Stud 50:73–87Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2018

Authors and Affiliations

  1. 1.Graduate Institute of BioresourcesNational Pingtung University of Science and TechnologyPingtungTaiwan
  2. 2.Institute of Wildlife Conservation, College of Veterinary MedicineNational Pingtung University of Science and TechnologyPingtungTaiwan
  3. 3.Department of EntomologyNational Chung Hsing UniversityTaichungTaiwan
  4. 4.Department of Biomedical Science and Environmental BiologyKaohsiung Medical UniversityKaohsiungTaiwan

Personalised recommendations