Advertisement

Rufous Common Cuckoo chicks are not always female

  • Jaroslav Koleček
  • Michal Šulc
  • Radka Piálková
  • Jolyon Troscianko
  • Milica Požgayová
  • Marcel Honza
  • Petr Procházka
Original Article

Abstract

The Common Cuckoo (hereafter Cuckoo) shows two adult plumage morphs—adult male plumage is grey and adult females are either grey or, less frequently, rufous. The situation is less clear in juveniles, as both sexes exhibit variable proportions of grey and rufous colour. We thus describe the patterns related to sex-specific plumage colour variation in a central European Cuckoo population. We genetically determined the sex of 91 Cuckoo chicks and using visual classification of photographs we scored juvenile plumage colouration of individual chicks into five classes based upon the increasing proportion of rufous colour on feathers. To verify these scores, we sampled chick feathers and quantified the proportion of rufous colour of individual feathers by digital image analysis. We found that juvenile females had a higher proportion of rufous colour of feathers than juvenile males. However, the difference was marginally non-significant based on visual inspection alone, and some male chicks even showed intensively rufous plumage like those of juvenile females. In contrast, we captured only grey adult males (n = 37), while five out of 20 adult females were rufous. The rufous colour of Cuckoo feathers considerably differed from the grey colour and the difference seemed to be larger in adults than in juveniles. We show that chicks, unlike adult females, cannot be visually assigned to either of the adult morphs. Therefore, we encourage further investigation of Cuckoo plumage colouration across the species’ range to examine the process of plumage maturation. A detailed genetic analysis is necessary to understand the origin of Cuckoo feather colouration.

Keywords

Avian vision Colour dimorphism Cuculus canorus Molecular analysis Plumage colouration Spectral reflectance 

Zusammenfassung

Rotbraune Küken des Kuckucks sind nicht immer weiblich

Erwachsene Kuckucke zeigen zwei unterschiedliche Gefiederfärbungen—das Gefieder der Männchen ist grau, während adulte Weibchen entweder grau oder, etwas seltener, rotbraun gefärbt sind. Bei Jungvögeln ist die Situation nicht ganz so klar, weil beide Geschlechter unterschiedliche Anteile grauer und rotbrauner Färbung zeigen. Wir beschreiben hier für eine zentraleuropäische Kuckuck-Population die Variationen der geschlechtsspezifischen Gefiederfärbung. Mit genetischen Methoden bestimmten wir das Geschlecht von 91 Kuckuck-Küken und teilten dann optisch anhand von Photographien das Gefieder eines jeden einzelnen Jungvogels in eine von fünf Kategorien, je nach Anteil der rotbraunen Färbung, ein. Zum Verifizieren dieser Klassifikation bestimmten wir für eine Stichprobe der Vögel den rotbraunen Farbanteil einzelner Federn auch noch mit einer digitalen Bildanalyse. Wir stellten fest, dass weibliche Jungvögel in ihren Federn einen größeren Rotbraun-Anteil als männliche Jungvögel hatten. Aber dieser Unterschied war, zumindest für die visuellen Bestimmungen, nicht signifikant, und einige männliche Jungvögel zeigten sogar eine stärker rotbraune Gefiederfärbung als die weiblichen. Auf der anderen Seite fingen wir nur graue adulte Männchen (n = 37), während fünf von 20 adulten Weibchen rotbraun gefärbt waren. Die rotbraune Farbe der Kuckuck-Federn unterschied sich wesentlich von der grauen Färbung, und dieser Unterschied schien bei den adulten Tieren größer als bei den Jungvögeln. Wir zeigen, dass Küken im Gegensatz zu adulten Weibchen nicht alleine anhand einer visuellen Untersuchung einer der beiden Farb-Varianten von Adulten zugeordnet werden können. Deshalb regen wir weitere Untersuchungen sowohl der Gefiederfärbung von Kuckucken über die Artgrenze hinweg an als auch der Gefiederreifung. Ferner ist eine detaillierte genetische Analyse erforderlich, um die Grundlagen der Gefiederfärbung beim Kuckuck zu verstehen.

Notes

Acknowledgements

We would like to thank Miroslav Čapek, Václav Jelínek, Lukáš Kulísek, Boris Prudík, Gabriela Štětková and Klára Žabková for help with fieldwork, Vojtěch Brlík, Radka Poláková, Peter Samaš and Kateřina Sosnovcová for assistance in the field as well as for scoring the Cuckoo chicks and Marie Kotasová Adámková for helpful advice on the measurements of spectral reflectance. We are also grateful to two anonymous reviewers for their valuable comments, Petr Suvorov and Veronika Štočková for their support and to the managers of the Hodonín Fish Farm for permission to conduct the fieldwork on their grounds. This study was supported by the Czech Science Foundation (project 17-12262S) and by the Institutional Research Plan (RVO: 68081766).

Compliance with ethical standards

Conflict of interest

All applicable international, national, and institutional guidelines for the care and use of animals were followed (Czech permit MUHOCJ 34437/2014 OŽP). The authors declare that they have no conflict of interest.

Supplementary material

10336_2018_1591_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1369 kb)

References

  1. Abraham M, Požgayová M, Procházka P, Piálková R, Honza M (2015) Is there a sex-specific difference between parasitic chicks in begging behaviour? J Ethol 33:151–158CrossRefGoogle Scholar
  2. Arbeitskreis Göttinger Ornithologen (2007) Der Kuckuck in Süd-Niedersachsen—ein Schlawiner mit Problemen. http://www.ornithologie-goettingen.de/?p=137. Accessed 12 Apr 2018
  3. Becker P (1989) Ein rotbraunes Männchen des Kuckucks (Cuculus canorus) bei Gronau/Leine. Beitr Naturkd Niedersachsens 42:158Google Scholar
  4. Becker L, Dankhoff S (1973) Der Kuckuck (Cuculus canorus canorus L.) in der Oberlausitz. Abhandl Ber Naturkundemus Görlitz 48: XIII/1–XIII/9Google Scholar
  5. Berggren Å, Armstrong DP, Lewis RM (2004) Delayed plumage maturation increases overwinter survival in North Island robins. Proc R Soc B 271:2123–2130CrossRefPubMedGoogle Scholar
  6. Berndt RK, Koop B, Struwe-Juhl B (2003) Vogelwelt Schleswig-Holsteins. Brutvogelatlas, vol 5, 2nd edn. Wachholtz, NeumünsterGoogle Scholar
  7. Bond AB (2007) The evolution of color polymorphism: crypticity, searching images, and apostatic selection. Annu Rev Ecol Evol Syst 38:489–514CrossRefGoogle Scholar
  8. Bračko F (2017) The occurrence of rufous-morph Cuckoo Cuculus canorus females in NE Slovenia. Acrocephalus 37:61–62CrossRefGoogle Scholar
  9. Brichetti P, Fracasso G (2006) Ornitologica italiana. Identificazione, distribuzione, consistenza e movimenti degli ucceli italiani, vol 3. Perdisa, BolognaGoogle Scholar
  10. Busche G (2003) Zur Häufigkeit der braunen Färbungsvariante des Kuckucks Cuculus canorus in Deutschland. Ornithol Mitt 55:127–131Google Scholar
  11. Carlborg Ö, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625CrossRefPubMedGoogle Scholar
  12. Cramp S (1985) The birds of the Western Palearctic, vol IV. Oxford University Press, OxfordGoogle Scholar
  13. Davies NB, Welbergen JA (2008) Cuckoo-hawk mimicry? An experimental test. Proc R Soc B 275:1817–1822CrossRefPubMedGoogle Scholar
  14. Dittrich W (1982) About the abundance of the Cuckoo (Cuculus canorus) in northern Bavaria and the recorded proportion of its hepatic colour phase. Vogelwelt 103:188–189Google Scholar
  15. Ferguson-Lees J, Christie D (2001) Raptors of the world. Helm, LondonGoogle Scholar
  16. Foster MS (1987) Delayed maturation, neoteny, and social system differences in two manakins of the genus Chiroxiphia. Evolution 41:547–558CrossRefPubMedGoogle Scholar
  17. Galeotti P, Rubolini D, Dunn PO, Fasola M (2003) Colour polymorphism in birds: causes and functions. J Evol Biol 16:635–646CrossRefPubMedGoogle Scholar
  18. Galván I, Møller AP (2013) Pheomelanin-based plumage coloration predicts survival rates in birds. Physiol Biochem Zool 86:184–192CrossRefPubMedGoogle Scholar
  19. Galván I, Solano F (2016) Bird integumentary melanins: biosynthesis, forms, function and evolution. Int J Mol Sci 17:520CrossRefPubMedPubMedCentralGoogle Scholar
  20. Galván I, Ghanem I, Møller AP (2012) Has removal of excess cysteine led to the evolution of pheomelanin? BioEssay 34:565–568CrossRefGoogle Scholar
  21. Gamer M, Lemon J, Singh IFP (2012) irr: various coefficients of interrater reliability and agreement. R package version 0.84Google Scholar
  22. Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, CambridgeGoogle Scholar
  23. Gray SM, McKinnon JS (2007) Linking color polymorphism maintenance and speciation. Trends Ecol Evol 22:71–79CrossRefPubMedGoogle Scholar
  24. Gregory RD, Vorisek P, Van Strien A, Meyling AWG, Jiguet F, Fornasari L, Reif J, Chylarecki P, Burfield IJ (2007) Population trends of widespread woodland birds in Europe. Ibis 149:78–97CrossRefGoogle Scholar
  25. Griffiths R, Double MC, Orr K, Dawson RJG (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075CrossRefPubMedGoogle Scholar
  26. Heidecke D (1981) Zum Auftreten der rotbraunen Varietät des Kuckucks. Ornithol Rundbr Mecklenburg 24:6–8Google Scholar
  27. Heyder R (1952) Die Vögel des Landes Sachsen. Akademische Verlag Gesellschaft, LeipzigGoogle Scholar
  28. Hill GE, McGraw KJ (2006) Bird coloration: function and evolution, vol 2. Harvard University Press, CambridgeGoogle Scholar
  29. Honza M, Šicha V, Procházka P, Ležalová R (2006) Host nest defense against a color-dimorphic brood parasite: Great Reed Warblers (Acrocephalus arundinaceus) versus Common Cuckoos (Cuculus canorus). J Ornithol 147:629–637CrossRefGoogle Scholar
  30. Huxley J (1955) Morphism in birds. Acta Int Congr Ornithol XI:309–328Google Scholar
  31. ImageJ (2018) Image processing and analysis in java. http://rsb.info.nih.gov/ij. Accessed 26 Mar 2018
  32. Kappers EF, Chakarov N, Krüger O, Mueller AK, Valcu M, Kempenaers B, Both C (2017) Classification and temporal stability of plumage variation in Common Buzzards. Ardea 105:125–136CrossRefGoogle Scholar
  33. Karell P, Ahola K, Karstinen T, Valkama J, Brommer JE (2011) Climate change drives microevolution in a wild bird. Nat Commun 2:208CrossRefPubMedPubMedCentralGoogle Scholar
  34. Küpper C, Stocks M, Risse JE, dos Remedios N, Farrell LL, McRae SB, Morgan TC, Karlionova N, Pinchuk P, Verkuil YI, Kitaysky A, Wingfield J, Piersma T, Zeng K, Slate J, Blaxter M, Lank D, Burke T (2016) A supergene determines highly divergent male reproductive morphs in the Ruff. Nat Genet 48:79CrossRefPubMedGoogle Scholar
  35. Lank DB, Smith CM, Hanotte O, Burke T, Cooke F (1995) Genetic polymorphism for alternative mating behaviour in lekking male Ruff Philomachus pugnax. Nature 378:59–62CrossRefGoogle Scholar
  36. Lönnberg E (1929) Svenska Fåglar. Ivar Baarsen, StockholmGoogle Scholar
  37. Mann C (2014) Common and oriental cuckoos: photo guide. Birdwatch 6(2014):45–51Google Scholar
  38. Maumary L, Vallotton L, Knaus P (2007) Die Vögel der Schweiz. Schweizerische Vogelwarte and Nos Oiseaux, Montmollin and SempachGoogle Scholar
  39. McGraw KJ, Safran RJ, Wakamatsu K (2005) How feather colour reflects its melanin content. Funct Ecol 19:816–821CrossRefGoogle Scholar
  40. McKinney ML, McNamara K (1991) Heterochrony: the evolution of ontogeny. Plenum, New YorkCrossRefGoogle Scholar
  41. McKinnon JS, Pierotti ME (2010) Colour polymorphism and correlated characters: genetic mechanisms and evolution. Mol Ecol 19:5101–5125CrossRefPubMedGoogle Scholar
  42. Noh HJ, Lee JW, Yoo JC (2016) Color morph variation in two brood parasites: Common Cuckoo and Lesser Cuckoo. Ornithol Sci 15:109–117CrossRefGoogle Scholar
  43. Odom KJ, Hall ML, Riebel K, Omland KE, Langmore NE (2014) Female song is widespread and ancestral in songbirds. Nat Commun 5:3379CrossRefPubMedGoogle Scholar
  44. Payne RB (1967) Interspecific communication signals in parasitic birds. Am Nat 101:363–375CrossRefGoogle Scholar
  45. Phillips PC (2008) Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9:855–867CrossRefPubMedPubMedCentralGoogle Scholar
  46. Quadrelli F (1990) Percentage of “hepatic” cuckoos, Cuculus canorus, in the low Po Plain. Riv Ital Ornitol 59:313Google Scholar
  47. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 1 Apr 2018
  48. Rankin KJ, McLean CA, Kemp DJ, Stuart-Fox D (2016) The genetic basis of discrete and quantitative colour variation in the polymorphic lizard, Ctenophorus decresii. BMC Evol Biol 16:179CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ringleben H (1958) Ein altes rostrotes Männchen des Kuckucks (Cuculus canorus). J Ornithol 99:375CrossRefGoogle Scholar
  50. Roulin A (2004) The evolution, maintenance and adaptive function of genetic colour polymorphism in birds. Biol Rev 79:815–848CrossRefPubMedGoogle Scholar
  51. Sackl P (1985) Zum Auftreten der rotbraunen Farbphase beim Kuckuck, Cuculus canorus L., in der mittleren Oststeiermark. Mitt Abt Zool Landesmus Joanneum 34:31–33Google Scholar
  52. Schaanning HTL (1916) Norges Fuglefauna. Cappelen, KristianiaGoogle Scholar
  53. Sinervo B, Svensson E (2002) Correlational selection and the evolution of genomic architecture. Heredity 89:329–338CrossRefPubMedGoogle Scholar
  54. Sinervo B, Zamudio K (2001) The evolution of alternative reproductive strategies: fitness differential, heritability and genetic correlation between the sexes. J Hered 92:198–205CrossRefPubMedGoogle Scholar
  55. Thorogood R, Davies NB (2012) Cuckoos combat socially transmitted defenses of Reed Warbler hosts with a plumage polymorphism. Science 337:578–580CrossRefPubMedGoogle Scholar
  56. Tischler F (1941) Die Vögel Ostpreussens and seiner Nachbargebiete, vol I. Königsberg, BerlinGoogle Scholar
  57. Trnka A, Grim T (2013) Color plumage polymorphism and predator mimicry in brood parasites. Front Zool 10:25CrossRefPubMedPubMedCentralGoogle Scholar
  58. Trnka A, Trnka M, Grim T (2015) Do rufous Common Cuckoo females indeed mimic a predator? An experimental test. Biol J Linn Soc 116:134–143CrossRefGoogle Scholar
  59. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  60. Voipio P (1953) The hepaticus variety and the juvenile plumage types of the Cuckoo. Ornis Fenn 30:97–117Google Scholar
  61. Wauters LA, Zaninetti M, Tosi G, Bertolino S (2004) Is coat-colour polymorphism in Eurasian Red Squirrels (Sciurus vulgaris L.) adaptive? Mammalia 68:37–48CrossRefGoogle Scholar
  62. Welbergen JA, Davies NB (2011) A parasite in wolf’s clothing: hawk mimicry reduces mobbing of cuckoos by hosts. Behav Ecol 22:574–579CrossRefGoogle Scholar
  63. Wellenreuther M, Svensson EI, Hansson B (2014) Sexual selection and genetic colour polymorphisms in animals. Mol Ecol 23:5398–5414CrossRefPubMedGoogle Scholar
  64. Witherby HF, Jourdain FCR, Ticehurst NF, Tucker BW (1949) The handbook of British birds. Witherby, LondonGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2018

Authors and Affiliations

  1. 1.The Czech Academy of Sciences, Institute of Vertebrate BiologyBrnoCzech Republic
  2. 2.Faculty of Natural SciencesUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterPenrynUK

Personalised recommendations