Advertisement

Loop migration, induced by seasonally different flyway use, in Northern European Barn Swallows

  • Martins Briedis
  • Petras Kurlavičius
  • Renata Mackevičienė
  • Rasa Vaišvilienė
  • Steffen Hahn
Original Article

Abstract

Seasonal variation in migratory routes seems to be a common trait among many Afro-Palearctic migrants, but there are only few examples of species or populations which shift between entirely different flyways in autumn and spring. To identify non-breeding regions and seasonal differences in migration strategies we tracked Barn Swallows (Hirundo rustica) from a Baltic breeding population by light-level geolocators. Using novel analytical tools, we provide the first full annual tracks for European swallows. The main non-breeding residency sites of the tracked individuals were located in Southern Africa and all birds followed a distinct counterclockwise loop migration pattern shifting from the central Afro-Palearctic flyway in autumn to the eastern Afro-Palearctic flyway in spring. Despite the elongated detour through the Arabian Peninsula and the Caucasus Mountains, spring migration was faster than autumn migration in all of the tracked males and one out of two females, implying favorable conditions en route that allow for more efficient and faster traveling.

Keywords

Annual cycle Geolocator Long-distance migration Loop migration 

Zusammenfassung

Schleifenzug nordeuropäischer Rauchschwalben, hervorgerufen durch jahreszeitlich unterschiedliche Zugrouten

Saisonal unterschiedliche Migrationsrouten scheinen bei vielen afro-paläarktischen Zugvögeln aufzutreten. Es gibt jedoch nur wenige Beispiele, bei denen eine Art oder eine Population völlig verschiedene Flugrouten im Herbst und im Frühjahr nutzt. Wir untersuchten baltische Rauchschwalben (Hirundo rustica) mittels Geolokatoren, um ihre Überwinterungsgebiete und saisonale Zugstrategien zu identifizieren. Die Hauptüberwinterungsorte der untersuchten Schwalben lagen im südlichen Afrika. Alle Vögel zeigten ein gegen den Uhrzeigersinn gerichtetes Zugmuster mit einer zentralen paläarktisch-afrikanischen Zugroute im Herbst und einer östlichen afro-paläarktischen Route im darauffolgenden Frühjahr. Der Frühjahrszug war trotz des langgezogenen Umwegs über die Arabische Halbinsel und den Kaukasus bei allen untersuchten Männchen und bei einem der beiden Weibchen schneller als der Herbstzug. Dies deutet auf sehr günstige Umweltbedingungen hin, die einen effizienteren und schnelleren Zugablauf ermöglichten.

Notes

Acknowledgements

We thank K. Dhanjal-Adams and S. Lisovski for their help with data analyses and F. Liechti and two anonymous reviewers for comments on an earlier draft of this manuscript. We are grateful to farm owners M. and V. Simanavičius, S. and E. Malijevskij, V. Mackevičius, and field assistants M. Mackevičius, I. Miškinytė, T. Simanavičius, and R. Vanagas; and the Swiss Federal Office for Environment contributed financial support for the development of the data loggers (UTF-Nr. 254, 332, 363, 400). The study complies with the current laws of Lithuania.

Supplementary material

10336_2018_1560_MOESM1_ESM.mp4 (911 kb)
Supplementary material 1 (MP4 911 kb) Online Resource 1. Video illustration of full annual migration tracks of the Baltic Barn Swallows
10336_2018_1560_MOESM2_ESM.jpg (629 kb)
Supplementary material 2 (JPEG 628 kb)

References

  1. Arizaga J, Willemoes M, Unamuno E et al (2015) Following year-round movements in Barn Swallows using geolocators: could breeding pairs remain together during the winter? Bird Study 62:141–145.  https://doi.org/10.1080/00063657.2014.998623 CrossRefGoogle Scholar
  2. Bauer S, Lisovski S, Hahn S (2015) Timing is crucial for consequences of migratory connectivity. Oikos 125:605–612.  https://doi.org/10.1111/oik.02706 CrossRefGoogle Scholar
  3. Briedis M, Beran V, Hahn S, Adamík P (2016a) Annual cycle and migration strategies of a habitat specialist, the Tawny Pipit Anthus campestris, revealed by geolocators. J Ornithol 157:619–626.  https://doi.org/10.1007/s10336-015-1313-3 CrossRefGoogle Scholar
  4. Briedis M, Hahn S, Gustafsson L et al (2016b) Breeding latitude leads to different temporal but not spatial organization of the annual cycle in a long-distance migrant. J Avian Biol 47:743–748.  https://doi.org/10.1111/jav.01002 CrossRefGoogle Scholar
  5. Briedis M, Träff J, Hahn S et al (2016c) Year-round spatiotemporal distribution of the enigmatic Semi-collared Flycatcher Ficedula semitorquata. J Ornithol 157:895–900.  https://doi.org/10.1007/s10336-016-1334-6 CrossRefGoogle Scholar
  6. Briedis M, Hahn S, Adamík P (2017) Cold spell en route delays spring arrival and decreases apparent survival in a long-distance migratory songbird. BMC Ecol 17:11.  https://doi.org/10.1186/s12898-017-0121-4 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Burman MS (2016) Citizen science reveals complex changes in barn swallow phenology in South Africa over three decades. Ph.D. thesis. University of Cape TownGoogle Scholar
  8. Conklin JR, Battley PF, Potter MA, Fox JW (2010) Breeding latitude drives individual schedules in a trans-hemispheric migrant bird. Nat Commun 1:67.  https://doi.org/10.1038/ncomms1072 CrossRefPubMedGoogle Scholar
  9. Cresswell W (2014) Migratory connectivity of Palaearctic-African migratory birds and their responses to environmental change: the serial residency hypothesis. Ibis 156:493–510CrossRefGoogle Scholar
  10. Evens R, Conway GJ, Henderson IG et al (2017) Migratory pathways, stopover zones and wintering destinations of Western European Nightjars Caprimulgus europaeus. Ibis 159:680–686.  https://doi.org/10.1111/ibi.12469 CrossRefGoogle Scholar
  11. Fransson T, Barboutis C, Mellroth R, Akriotis T (2008) When and where to fuel before crossing the Sahara desert—extended stopover and migratory fuelling in first-year garden warblers Sylvia borin. J Avian Biol 39:133–138.  https://doi.org/10.1111/j.2008.0908-8857.04361.x CrossRefGoogle Scholar
  12. Hahn S, Bauer S, Liechti F (2009) The natural link between Europe and Africa—2.1 billion birds on migration. Oikos 118:624–626.  https://doi.org/10.1111/j.1600-0706.2008.17309.x CrossRefGoogle Scholar
  13. Hahn S, Emmenegger T, Lisovski S et al (2014) Variable detours in long-distance migration across ecological barriers and their relation to habitat availability at ground. Ecol Evol 4:4150–4160.  https://doi.org/10.1002/ece3.1279 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hewson CM, Thorup K, Pearce-Higgins JW, Atkinson PW (2016) Population decline is linked to migration route in the Common Cuckoo. Nat Commun 7:12296.  https://doi.org/10.1038/ncomms12296 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hobson KA, Kardynal KJ, Van Wilgenburg SL et al (2015) A continent-wide migratory divide in North American breeding barn swallows (Hirundo rustica). PLoS One 10:e0129340.  https://doi.org/10.1371/journal.pone.0129340 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Klaassen RHG, Strandberg R, Hake M et al (2010) Loop migration in adult marsh harriers Circus aeruginosus, as revealed by satellite telemetry. J Avian Biol 41:200–207.  https://doi.org/10.1111/j.1600-048x.2010.05058.x CrossRefGoogle Scholar
  17. Klvaňa P, Cepák J, Munclinger P et al (2017) Around the Mediterranean: an extreme example of loop migration in a long-distance migratory passerine. J Avian Biol 49:jav-01595.  https://doi.org/10.1111/jav.01595 CrossRefGoogle Scholar
  18. Koleček J, Procházka P, El-Arabany N et al (2016) Cross-continental migratory connectivity and spatiotemporal migratory patterns in the great reed warbler. J Avian Biol 47:756–767.  https://doi.org/10.1111/jav.00929 CrossRefGoogle Scholar
  19. Koleček J, Hahn S, Emmenegger T, Procházka P (2018) Intra-tropical movements as a beneficial strategy for Palearctic migratory birds. R Soc Open Sci 5:171675.  https://doi.org/10.1098/rsos.171675 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kranstauber B, Weinzierl R, Wikelski M, Safi K (2015) Global aerial flyways allow efficient travelling. Ecol Lett 18:1338–1345.  https://doi.org/10.1111/ele.12528 CrossRefPubMedGoogle Scholar
  21. La Sorte FA, Fink D (2017) Migration distance, ecological barriers and en-route variation in the migratory behaviour of terrestrial bird populations. Glob Ecol Biogeogr 26:216–227.  https://doi.org/10.1111/geb.12534 CrossRefGoogle Scholar
  22. La Sorte FA, Fink D, Hochachka WM et al (2014) Spring phenology of ecological productivity contributes to the use of looped migration strategies by birds. Proc R Soc Ser B 281:20140984.  https://doi.org/10.1098/rspb.2014.0984 CrossRefGoogle Scholar
  23. Lemke HW, Tarka M, Klaassen RHG et al (2013) Annual cycle and migration strategies of a trans-Saharan migratory songbird: a geolocator study in the great reed warbler. PLoS One 8:e79209.  https://doi.org/10.1371/journal.pone.0079209 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Liechti F, Scandolara C, Rubolini D et al (2015) Timing of migration and residence areas during the non-breeding period of barn swallows Hirundo rustica in relation to sex and population. J Avian Biol 46:254–265.  https://doi.org/10.1111/jav.00485 CrossRefGoogle Scholar
  25. Lislevand T, Briedis M, Heggøy O, Hahn S (2017) Seasonal migration strategies of Common Ringed Plovers Charadrius hiaticula. Ibis 159:225–229.  https://doi.org/10.1111/ibi.12424 CrossRefGoogle Scholar
  26. Lisovski S, Hahn S (2012) GeoLight—processing and analysing light-based geolocator data in R. Methods Ecol Evol 3:1055–1059.  https://doi.org/10.1111/j.2041-210x.2012.00248.x CrossRefGoogle Scholar
  27. Lisovski S, Hewson CM, Klaassen RHGG et al (2012) Geolocation by light: accuracy and precision affected by environmental factors. Methods Ecol Evol 3:603–612.  https://doi.org/10.1111/j.2041-210x.2012.00185.x CrossRefGoogle Scholar
  28. Lisovski S, Gosbell K, Christie M et al (2016) Movement patterns of Sanderling (Calidris alba) in the East Asian–Australasian Flyway and a comparison of methods for identification of crucial areas for conservation. Emu 116:168–177.  https://doi.org/10.1071/mu15042 CrossRefGoogle Scholar
  29. Mellone U, López-López P, Limiñana R et al (2013) The trans-equatorial loop migration system of Eleonora’s falcon: differences in migration patterns between age classes, regions and seasons. J Avian Biol 44:417–426.  https://doi.org/10.1111/j.1600-048x.2013.00139.x Google Scholar
  30. Newton I (2008) The migration ecology of birds. Academic, LondonGoogle Scholar
  31. Nilsson C, Klaassen RHG, Alerstam T (2013) Differences in speed and duration of bird migration between spring and autumn. Am Nat 181:837–845.  https://doi.org/10.1086/670335 CrossRefPubMedGoogle Scholar
  32. Schaub M, Jenni L (2000) Body mass of six long-distance migrant passerine species along the autumn migration route. J Ornithol 141:441–460.  https://doi.org/10.1007/bf01651574 CrossRefGoogle Scholar
  33. Szép T, Liechti F, Nagy K et al (2017) Discovering the migration and non-breeding areas of sand martins and house martins breeding in the Pannonian basin (central-eastern Europe). J Avian Biol 48:114–122.  https://doi.org/10.1111/jav.01339 CrossRefGoogle Scholar
  34. Thorup K, Tøttrup AP, Willemoes M et al (2017) Resource tracking within and across continents in long-distance bird migrants. Sci Adv 3:E1601360.  https://doi.org/10.1126/sciadv.1601360 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Tøttrup AP, Klaassen RHG, Kristensen MW et al (2012a) Drought in Africa caused delayed arrival of European songbirds. Science 338:1307.  https://doi.org/10.1126/science.1227548 CrossRefPubMedGoogle Scholar
  36. Tøttrup AP, Klaassen RHG, Strandberg R et al (2012b) The annual cycle of a trans-equatorial Eurasian–African passerine migrant: different spatio-temporal strategies for autumn and spring migration. Proc R Soc B Biol Sci 279:1008–1016.  https://doi.org/10.1098/rspb.2011.1323 CrossRefGoogle Scholar
  37. Tøttrup AP, Pedersen L, Onrubia A et al (2017) Migration of red-backed shrikes from the Iberian Peninsula: optimal or sub-optimal detour? J Avian Biol 48:149–154.  https://doi.org/10.1111/jav.01352 CrossRefGoogle Scholar
  38. Valkama J, Saurola P, Lehikoinen A et al (2014) The Finnish bird ringing atlas, vol II. Finnish Museum of Natural History and Ministry of Environment, HelsinkiGoogle Scholar
  39. van Wijk RE, Bauer S, Schaub M (2016) Repeatability of individual migration routes, wintering sites, and timing in a long-distance migrant bird. Ecol Evol 6:8679–8685.  https://doi.org/10.1002/ece3.2578 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Vansteelant WMG, Shamoun-Baranes J, van Manen W et al (2017) Seasonal detours by soaring migrants shaped by wind regimes along the East Atlantic Flyway. J Anim Ecol 86:179–191.  https://doi.org/10.1111/1365-2656.12593 CrossRefPubMedGoogle Scholar
  41. Willemoes M, Strandberg R, Klaassen RHG et al (2014) Narrow-front loop migration in a population of the Common Cuckoo Cuculus canorus, as revealed by satellite telemetry. PLoS One 9:e83515.  https://doi.org/10.1371/journal.pone.0083515 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Willemoes M, Blas J, Wikelski M, Thorup K (2015) Flexible navigation response in common cuckoos Cuculus canorus displaced experimentally during migration. Sci Rep.  https://doi.org/10.1038/srep16402 PubMedPubMedCentralGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2018

Authors and Affiliations

  1. 1.Department of Bird MigrationSwiss Ornithological InstituteSempachSwitzerland
  2. 2.Department of Biology and ChemistryLithuanian University of Educational SciencesVilniusLithuania
  3. 3.Lithuanian Ornithological SocietyVilniusLithuania

Personalised recommendations