Advertisement

Journal of Ornithology

, Volume 159, Issue 3, pp 879–882 | Cite as

First insights into the migration route and migratory connectivity of the Paddyfield Warbler using geolocator tagging and stable isotope analysis

  • Vojtěch Brlík
  • Mihaela Ilieva
  • Simeon Lisovski
  • Christian C. Voigt
  • Petr Procházka
Short Communication

Abstract

The Paddyfield Warbler Acrocephalus agricola has recently expanded its breeding range westwards to the western coast of the Black Sea. Although its non-breeding range is known (southern Iran to northern Myanmar), current knowledge on how individual birds migrate and how their routes evolve alongside range expansion processes is very limited. Data from one geolocator deployed on a Paddyfield Warbler at a recently established breeding site in Bulgaria show that this individual retraced the recent range expansion and followed a rather conservative route instead of migrating directly to India. An additional stable hydrogen (δ2H) analysis of feathers from 25 individual breeding birds in Bulgaria that had been grown during their stay in the non-breeding grounds indicated a low degree of migratory connectivity at the non-breeding grounds. Our results provide a first insight into the migration pattern of the Paddyfield Warbler and should stimulate further research on the use of the understudied Indo-European flyway by this species.

Keywords

Bird migration Indo-European flyway Light-level geolocation Migration direction δ2

Zusammenfassung

Geolokatoren und stabile Isotopenanalyse liefern erste Erkenntnisse über Zugwege und räumlichen Konnektivität vom Feldrohrsänger

Die geographischen Grenzen des Brutgebiets des Feldrohrsängers (Acrocephalus agricola) haben sich in letzter Zeit in Richtung Westen, bis hin zur Küste des Schwarzen Meeres, vergrößert. Obwohl es bekannt, wo sich die Art außerhalb der Brutzeit aufhält (südlicher Iran bis nördliches Myanmar), kennen wir weder die individuellen Zugstrecken noch die genauen Mechanismen, wie sich die Zustrecken in Gebieten der geographischen Artausbreitung evolvieren, kaum. Die Daten eines Geolokators, welcher die Zugwege eines einzelnen Individuums aus einem kürzlich in Bulgarien neu besiedeltem Brutgebiet aufzeichnete, zeigen, dass dieses Individuum dem Ausbreitungsmuster des Brutgebiets folgte und somit der Zugweg eher ein Umweg als eine direkter Flug ins Wintergebiet nach Indien darstellt. Eine zusätzliche Analyse von Wasserstoffisotopen aus Federn welche im Wintergebiet gemausert und im Brutgebiet in Bulgarien gesammelt wurden weist auf eine niedrige räumliche Konnektivität zwischen Brut- und Wintergebiet hin. Diese Ergebnisse liefern erste Erkenntnisse über das Zugverhalten von Feldrohrsängern und sollten das Interesse an wissenschaftlichen Projekten über diese Arten und deren noch wenig untersuchten Indo-European Zugweg stimulieren.

Notes

Acknowledgements

František Buben, Dimitar Dimitrov, Martin Marinov, Strahil Peev, Boris Prudík, Christoffer Sjöholm, Martin Sládeček, Matěj Žídek assisted in the field. Yvonne Klaar and Doris Fichte helped with the stable isotope analysis. We thank Adéla Stupková for the painting of the Paddyfield Warbler and her help in the field. We are grateful to anonymous reviewers for their comments on the manuscript. The study was funded by the Czech Science Foundation (project no. 13-06451S). The research was conducted under permissions 574/27.03.2014 and 672/17.03.2016 issued from the Ministry of Environment and Waters of Bulgaria and complies with the current Bulgarian laws.

Supplementary material

10336_2018_1557_MOESM1_ESM.pdf (120 kb)
Supplementary material 1 (PDF 121 kb)
10336_2018_1557_MOESM2_ESM.pdf (343 kb)
Supplementary material 2 (PDF 342 kb)

References

  1. Bairlein F, Norris DR, Nagel R, Bulte M, Voigt CC, Fox J, Hussell DJT, Schmaljohann H (2012) Cross-hemisphere migration of a 25 g songbird. Biol Lett 8:505–507.  https://doi.org/10.1098/rsbl.2011.1223 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Berthold P, Helbig AJ, Mohr G, Querner U (1992) Rapid microevolution of migratory behaviour in a wild bird species. Nature 360:668–670.  https://doi.org/10.1038/360668a0 CrossRefGoogle Scholar
  3. BirdLife International (2017). Handbook of the birds of the World 2016. Bird species distribution maps of the world. Version 6.0. http://datazone.birdlife.org/species/requestdis. Accessed 15 Oct 2017
  4. Courtiol A, Rousset F, Kramer-Schadt S (2016) R package Isorix: isoscape computation and inference of spatial origins using mixed models. R package version 0.4–1. GitHub. https://github.com/courtiol/IsoriX_project/tree/master/IsoriX. Accessed 17 Oct 2017
  5. Finch T, Butler SJ, Franco AMA, Cresswell W (2017) Low migratory connectivity is common in long-distance migrant birds. J Anim Ecol 86:662–673.  https://doi.org/10.1111/1365-2656.12635 CrossRefPubMedGoogle Scholar
  6. Gavrilenko MI (1954) Paddyfield warbler (Acrocephalus agricola septima subsp. nova) and reed warbler (Acrocephalus scirpaceus scirpaceus Herm.) in Poltavshchina: their biology distribution and taxonomy. Nauk Zap Poltavsk Ped Inst 7:53–62 (in Ukrainian)Google Scholar
  7. Hennig C (2015) fpc: flexible procedures for clustering. R package version 2.1–10. https://CRAN.R-project.org/package=fpc. Accessed 17 Oct 2017
  8. Kennerley P, Pearson D (2010) Reed and bush warblers. A&C Black Publishers Ltd, LondonGoogle Scholar
  9. Popa-Lisseanu AG, Sörgel K, Luckner A, Wassenaar LI, Ibáñez C, Kramer-Schadt S, Ciechanowski M, Görföl T, Niermann I, Beuneux G, Mysłajek RW, Juste J, Fonderflick J, Kelm DH, Voigt CC (2012) A triple-isotope approach to predict the breeding origins of European bats. PLoS One 7:e30388.  https://doi.org/10.1371/journal.pone.0030388 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Procházka P, Van Wilgenburg SL, Neto JM, Yosef R, Hobson KA (2013) Using stable hydrogen isotopes (δ2H) and ring recoveries to trace natal origins in a Eurasian passerine with a migratory divide. J Avian Biol 44:541–550.  https://doi.org/10.1111/j.1600-048X.2013.00185.x CrossRefGoogle Scholar
  11. R Core Team (2016) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/. Accessed 17 Oct 2017
  12. Rakhimberdiev E, Saveliev A, Piersma T, Karagicheva J (2017) FLightR: an R package for reconstructing animal paths from solar geolocation loggers. Methods Ecol Evol 8:1482–1487.  https://doi.org/10.1111/2041-210X.12765 CrossRefGoogle Scholar
  13. Sutherland W (1998) Evidence for flexibility and constraint in migration systems. J Avian Biol 29:441–446CrossRefGoogle Scholar
  14. Vander Zanden HB, Wunder MB, Hobson KA, Van Wilgenburg SL, Wassenaar LI, Welker JM, Bowen GJ (2014) Contrasting assignment of migratory organisms to geographic origins using long-term versus year-specific precipitation isotope maps. Methods Ecol Evol 5:891–900.  https://doi.org/10.1111/2041-210X.12229 CrossRefGoogle Scholar
  15. Zehtindjiev P, Ilieva M, Åkesson S (2010) Autumn orientation behaviour of paddyfield warblers, Acrocephalus agricola, from a recently expanded breeding range on the western Black Sea coast. Behav Process 85:167–171.  https://doi.org/10.1016/j.beproc.2010.07.003 CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2018

Authors and Affiliations

  1. 1.Institute of Vertebrate Biology, The Czech Academy of SciencesBrnoCzech Republic
  2. 2.Department of Ecology, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  3. 3.Institute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSofiaBulgaria
  4. 4.Swiss Ornithological InstituteSempachSwitzerland
  5. 5.Evolutionary Ecology Research GroupLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany

Personalised recommendations