Advertisement

Journal of Ornithology

, Volume 159, Issue 3, pp 805–814 | Cite as

Relationships between sperm morphological traits and sperm swimming performance in wild Great Tits (Parus major)

  • Sylvain LosdatEmail author
  • Fabrice Helfenstein
Original Article

Abstract

Sperm competition, the competition among rival males’ sperm for the fertilization of a given female’s set of ova, is a powerful selective force shaping male reproductive traits such as sperm performance. Sperm morphology, the size and shape of the different parts of a spermatozoon, plays a major role in sperm swimming performance with consequences for a male’s sperm competitive ability and reproductive success. However, despite important implications for the evolution of sperm traits and associated reproductive strategies, the intraspecific relationships between sperm morphology and sperm swimming performance remain unclear. Using wild Great Tits (Parus major), we quantified the among-male relationships between sperm morphological components and sperm swimming performance measured as sperm motility, sperm velocity, sperm swimming endurance, and sperm longevity. We also examined the within- and among-male relationships across sperm morphological traits. Sperm motility was positively correlated with sperm head length and sperm total length while sperm velocity was positively related to sperm midpiece length. In contrast, sperm swimming endurance and longevity were unrelated to any sperm morphological trait. We also observed positive among-male correlations among sperm morphological traits and substantial within-male variation in those traits, which potentially reflects antagonistic selection pressures acting on sperm morphology. Our study shows that sperm morphological components predict different aspects of sperm swimming performance in passerine birds though these relationships were rather weak. Overall, longer sperm morphological components were associated with faster and more motile sperm, which may transfer into higher reproductive success.

Keywords

Parus major Reproductive success Sexual selection Sperm competition Sperm morphology Sperm performance 

Zusammenfassung

Zusammenhang zwischen Morphologie und Schwimmvermögen von Spermien bei Kohlmeisen Parus major

Spermienkonkurrenz, die Konkurrenz zwischen den Samenzellen rivalisierender Männchen um die Befruchtung eines Weibchens, ist eine sehr starke selektive Kraft bei der Ausbildung erfolgreicher Reproduktions-Eigenschaften wie zum Beispiel der Leistungsfähigkeit von Spermien. Die Spermien-Morphologie, also die Größe und Form der unterschiedlichen Teile einer Samenzelle, spielt für ihre Schwimmfähigkeit eine große Rolle, mit Auswirkungen auf die Konkurrenzfähigkeit der Samenzellen und damit auf den Fortpflanzungserfolg des betreffenden Männchen. Aber ungeachtet der großen Bedeutung für die Evolution der Eigenschaften von Spermien und der damit verbundenen Fortpflanzungsstrategien, ist der innerartliche Zusammenhang zwischen Spermien-Morphologie und ihrem Schwimmvermögen nach wie vor unklar. Für Männchen von Wildfängen der Kohlmeise quantifizierten wir Zusammenhänge zwischen den morphologischen Eigenheiten der Spermien und ihrer Schwimmfähigkeit, gemessen anhand ihrer Beweglichkeit, Geschwindigkeit, Schwimm-Ausdauer und ihrer Lebensspanne. Ferner erfassten und verglichen wir die morphologischen Eigenschaften der Spermien eines einzigen Männchen sowie die innerhalb der ganzen Gruppe der getesteten Männchen. Die Spermien-Beweglichkeit korrelierte positiv mit der Länge des Spermienkopfs sowie mit der gesamten Länge der Spermien, während die Geschwindigkeit positiv mit der Länge des mittleren Abschnitts der Spermien korrelierte. Im Gegensatz dazu konnte kein Zusammenhang zwischen der Schwimmausdauer und Langlebigkkeit der Spermien und ihren morphologischen Eigenschaften gefunden werden. Wir stellten außerdem für die Männchen der Gruppe eine positive Korrelation zwischen den morphologischen Eigenschaften der Spermien fest, wobei diese Eigenschaften innerhalb der einzelnen Individuen stark variierten. Das deutet auf einen möglichen antagonistischen Selektionsdruck auf die Spermien-Morphologie hin. Unsere Untersuchung zeigt, dass bei Sperlingsvögeln von morphologischen Gegebenheiten eines Spermiums auf dessen Schwimmfähigkeit geschlossen werden kann, wobei diese Zusammenhänge jedoch recht schwach ausgeprägt waren. Generell kann man sagen, dass längere Spermien und Spermienabschnitte schnellere und beweglichere Spermien bedeuten, was zu einem größeren Fortpflanzungserfolg von diesen führen könnte.

Notes

Acknowledgements

The authors thank Benoit Gaude, Celia Rubrecht, and Geraldine Prager for field assistance.

Author contributions

SL and FH conceived the study. SL collected the data and conducted the statistical analyses. SL and FH wrote the manuscript.

Funding

Field data collection was financially supported by a Swiss National Science Foundation Grant to Prof. Heinz Richner. The data were analyzed and the manuscript written while FH was financially supported by a Swiss National Science Foundation Grant.

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.

Ethical approval

This work was conducted under license of the Ethical Committee of the Agricultural Office of the Canton Bern (Switzerland). Ringing permits were provided by the Swiss Federal Agency for Environment, Forests and Landscapes and the Swiss Ornithological Institute (Sempach, Switzerland).

Data availability

Data used in this study is available in the Excel file provided as supplementary material.

Supplementary material

10336_2018_1539_MOESM1_ESM.docx (569 kb)
Supplementary material 1 (DOCX 569 kb)
10336_2018_1539_MOESM2_ESM.xls (644 kb)
Supplementary material 2 (XLS 644 kb)

References

  1. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57:289–300Google Scholar
  2. Bennison C, Hemmings N, Slate J, Birkhead T (2015) Long sperm fertilize more eggs in a bird. Proc R Soc B Biol Sci 282:20141897CrossRefGoogle Scholar
  3. Birkhead TR (2009) Sperm biology: an evolutionary perspective. Academic, San DiegoGoogle Scholar
  4. Birkhead TR, Møller AP (1998) Sperm competition and sexual selection. Academic, San DiegoGoogle Scholar
  5. Birkhead TR, Pizzari T (2002) Postcopulatory sexual selection. Nat Rev Genet 3:262–273CrossRefPubMedGoogle Scholar
  6. Birkhead TR, Martinez JG, Burke T, Froman DP (1999) Sperm mobility determines the outcome of sperm competition in the domestic fowl. Proc R Soc B Biol Sci 266:1759–1764CrossRefGoogle Scholar
  7. Blengini CS, Sergio N, Gabriela C, Giojalas LC, Margarita C (2014) Variability in sperm form and function in the context of sperm competition risk in two Tupinambis lizards. Ecol Evol 4:4080–4092CrossRefPubMedPubMedCentralGoogle Scholar
  8. Briskie J, Montgomerie R (1992) Sperm size and sperm competition in birds. Proc R Soc Lond B 247:89–95CrossRefGoogle Scholar
  9. Briskie J, Montgomerie R, Birkhead T (1997) The evolution of sperm size in birds. Evolution 51:937–945CrossRefPubMedGoogle Scholar
  10. Calhim S, Double MC, Margraf N, Birkhead TR, Cockburn A (2011) Maintenance of sperm variation in a highly promiscuous wild bird. PLoS One 6:e28809CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cramer ERA, Laskemoen T, Stensrud E, Rowe M, Haas F, Lifjeld JT, Sætre G-P, Johnsen A (2015) Morphology-function relationships and repeatability in the sperm of Passer sparrows. J Morphol 276:370–377CrossRefPubMedGoogle Scholar
  12. Firman RC, Simmons LW (2010) Sperm midpiece length predicts sperm swimming velocity in house mice. Biol Lett 6:513–516CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fisher HS, Jacobs-Palmer E, Lassance J-M, Hoekstra HE (2016) The genetic basis and fitness consequences of sperm midpiece size in deer mice. Nat Commun 7:13652CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fitzpatrick JL, Lüpold S (2014) Sexual selection and the evolution of sperm quality. Mol Hum Reprod 20:1180–1189CrossRefPubMedGoogle Scholar
  15. Fitzpatrick JL, Montgomerie R, Desjardins JK, Stiver KA, Kolm N, Balshine S (2009) Female promiscuity promotes the evolution of faster sperm in cichlid fishes. Proc Natl Acad Sci USA 106:1128–1132CrossRefPubMedGoogle Scholar
  16. Fitzpatrick JL, Garcia-Gonzalez F, Evans JP (2010) Linking sperm length and velocity: the importance of intramale variation. Biol Lett 6:797–799CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fitzpatrick JL, Simmons LW, Evans JP (2012) Complex patterns of multivariate selection on the ejaculate of a broadcast spawning marine invertebrate. Evolution 66:2451–2460CrossRefPubMedGoogle Scholar
  18. Froman D (2003) Deduction of a model for sperm storage in the oviduct of the domestic fowl (Gallus domesticus). Biol Reprod 69:248–253CrossRefPubMedGoogle Scholar
  19. Gomendio M, Roldan E (1991) Sperm competition influences sperm size in mammals. Proc R Soc B Biol Sci 243:181–185CrossRefGoogle Scholar
  20. Gomendio M, Roldan E (2008) Implications of diversity in sperm size and function for sperm competition and fertility. Int J Dev Biol 52:439–447CrossRefPubMedGoogle Scholar
  21. Gomendio M, Malo AF, Garde J, Roldan ERS (2007) Sperm traits and male fertility in natural populations. Reproduction 134:19–29CrossRefPubMedGoogle Scholar
  22. Helfenstein F, Podevin M, Richner H (2010) Sperm morphology, swimming velocity, and longevity in the house sparrow Passer domesticus. Behav Ecol Sociobiol 64:557CrossRefGoogle Scholar
  23. Hemmings N, Bennison C, Birkhead TR (2016) Intra-ejaculate sperm selection in female zebra finches. Biol Lett 12.  https://doi.org/10.1098/rsbl.2016.0220
  24. Humphries S, Evans J, Simmons L (2008) Sperm competition: linking form to function. BMC Evol Biol 8:319CrossRefPubMedPubMedCentralGoogle Scholar
  25. Immler S, Birkhead TR (2007) Sperm competition and sperm midpiece size: no consistent pattern in passerine birds. Proc R Soc B Biol Sci 274:561–568CrossRefGoogle Scholar
  26. Immler S, Calhim S, Birkhead TR (2008) Increased postcopulatory sexual selection reduces the intramale variation in sperm design. Evolution 62:1538–1543CrossRefPubMedGoogle Scholar
  27. Kleven O, Laskemoen T, Fossoy F, Robertson RJ, Lifjeld JT (2008) Intraspecific variation in sperm length is negatively related to sperm competition in passerine birds. Evolution 62:494–499CrossRefPubMedGoogle Scholar
  28. Laskemoen T, Kleven O, Fossoy F, Lifjeld JT (2007) Intraspecific variation in sperm length in two passerine species, the bluethroat Luscinia svecica and the willow warbler Phylloscopus trochilus. Ornis Fenn 84:131Google Scholar
  29. Laskemoen T, Albrecht T, Bonisoli-Alquati A, Cepak J, De Lope F, Hermosell IG, Johannessen LE, Kleven O, Marzal A, Mousseau TA (2013) Variation in sperm morphometry and sperm competition among barn swallow (Hirundo rustica) populations. Behav Ecol Sociobiol 67:301–309CrossRefGoogle Scholar
  30. Levitan DR (2000) Sperm velocity and longevity trade off each other and influence fertilization in the sea urchin Lytechinus variegatus. Proc R Soc B Biol Sci 267:531–534CrossRefGoogle Scholar
  31. Lifjeld JT, Laskemoen T, Kleven O, Albrecht T, Robertson RJ (2010) Sperm length variation as a predictor of extrapair paternity in passerine birds. PLoS One 5:e13456CrossRefPubMedPubMedCentralGoogle Scholar
  32. Losdat S, Helfenstein H, Gaude B, Richner H (2011) Reproductive effort transiently reduces antioxidant capacity in a wild bird. Behav Ecol 22:1218–1226CrossRefGoogle Scholar
  33. Lüpold S, Linz GM, Rivers JW, Westneat DF, Birkhead TR (2009) Sperm competition selects beyond relative testes size in birds. Evolution 63:391–402CrossRefPubMedGoogle Scholar
  34. Lüpold S, Manier MK, Berben KS, Smith KJ, Daley BD, Buckley SH, Belote JM, Pitnick S (2012) How multivariate ejaculate traits determine competitive fertilization success in Drosophila melanogaster. Curr Biol 22:1667–1672CrossRefPubMedGoogle Scholar
  35. Mossman J, Slate J, Humphries S, Birkhead T (2009) Sperm morphology and velocity are genetically codetermined in the zebra finch. Evolution 63:2730–2737CrossRefPubMedGoogle Scholar
  36. Parker GA (1970) Sperm competition and its evolutionary consequences in the insects. Biol Rev 45:525–567CrossRefGoogle Scholar
  37. Parker GA (1998) Sperm competition and the evolution of ejaculates: towards a theory base. In: Birkhead TR, Møller AP (eds) Sperm competition and sexual selection. Academic, London, pp 3–54CrossRefGoogle Scholar
  38. Pinheiro J, Bates D, Debroy S, Sarkar D (2011) R Development Core Team. 2010. nlme: linear and nonlinear mixed effects models. R package version 3.1-97. R Foundation for Statistical Computing, ViennaGoogle Scholar
  39. Pitnick S, Birkhead TR, Hosken DJ (2009) Sperm morphological diversity. In: Birkhead TR, Hosken DJ, Pitnick S (eds) Sperm biology: an evolutionary perspective. Academic, San Diego, pp 406–427Google Scholar
  40. Pizzari T, Parker GA (2009) Sperm competition and sperm phenotype. In: Birkhead TR, Hosken DJ, Pitnick S (eds) Sperm biology: an evolutionary perspective. Academic, San Diego, pp 207–245CrossRefGoogle Scholar
  41. Pizzari T, Worley K, Burke T, Froman D (2008) Sperm competition dynamics: ejaculate fertilising efficiency changes differentially with time. BMC Evol Biol 8:332CrossRefPubMedPubMedCentralGoogle Scholar
  42. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  43. Rojas Mora A, Meniri M, Ciprietti S, Helfenstein F (2017) Social dominance explains within-ejaculate variation in sperm design in a passerine bird. BMC Evol Biol 17:66CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rowe M, Albrecht T, Cramer ER, Johnsen A, Laskemoen T, Weir JT, Lifjeld JT (2015) Postcopulatory sexual selection is associated with accelerated evolution of sperm morphology. Evolution 69:1044–1052CrossRefPubMedGoogle Scholar
  45. Simmons LW, Fitzpatrick JL (2012) Sperm wars and the evolution of male fertility. Reproduction 144:519–534CrossRefPubMedGoogle Scholar
  46. Simpson JL, Humphries S, Evans JP, Simmons LW, Fitzpatrick JL (2014) Relationships between sperm length and speed differ among three internally and three externally fertilizing species. Evolution 68:92–104CrossRefPubMedGoogle Scholar
  47. Snook RR (2005) Sperm in competition: not playing by the numbers. Trends Ecol Evol 20:46–53CrossRefPubMedGoogle Scholar
  48. Van De Pol M, Wright J (2009) A simple method for distinguishing within- versus between-subject effects using mixed models. Anim Behav 77:753–758CrossRefGoogle Scholar
  49. Wilson-Leedy JG, Ingermann RL (2007) Development of a novel CASA system based on open source software for characterization of zebrafish sperm motility parameters. Theriogenology 67:661–672CrossRefPubMedGoogle Scholar
  50. Wolfson A (1952) The cloacal protuberance: a means for determining breeding condition in live male passerines. Bird Band 23:159–165CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2018

Authors and Affiliations

  1. 1.Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
  2. 2.Evolutionary Ecology Lab, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland

Personalised recommendations